

European Network of Transmission System Operators for Electricity

MONITORING REPORT ON CONNECTION NETWORK CODES IMPLEMENTATION

Final Version | 1 December 2020

From: Steering Group Connection Network Codes – Implementation Monitoring Team

Final Version | 1 December 2020

TABLE OF CONTENTS

1	Objective and Scope
1.1	Background of the Monitoring Report derived from the legal Framework
2	Input Data for the Report7
2.1	Approach of 2020 Implementation Monitoring Report7
2.2	Introduction of the Report's Structure7
2.2.1	Introduction of binary coding approach for analysis of countries' non-exhaustive requirements' implementation status
2.2.2	Example for interpretation of applied bar charts8
2.3	Definitions9
2.3.1	Definition of a "non-exhaustive requirement as such" to be considered as general implementation
2.3.2	Definition of a "non-exhaustive requirement as such" to be considered as site-specific implementation
2.3.3	Definition of the "value/range of a non-exhaustive requirement" to be considered as general implementation
2.3.4	Definition of the "value/range of a non-exhaustive requirement" to be considered as site- specific implementation
2.4	Other used acronyms
3	NC RfG Implementation11
3.1	Capacity thresholds11
3.2	Reason for deviation from RfG capacity threshold of PGM of type B/C/D12
3.3	Number of implemented non-exhaustive requirements in NC RfG16
3.4	Frequency Issues of NC RfG17
3.5	Voltage Issues (1) – FRT according to Article 14(3) of NC RfG
3.6	Voltage Issues (2) – FRT according to Article 16(3) of NC RfG45

3.7	Voltage Issues (3) – Voltage Ranges PGM, Reactive Power SPGM/PPM	59
3.8	System Restoration Issues of NC RfG	73
3.9	Instrumentation, Simulation Models and Protection Issues of NC RfG	87
3.10	Specific statistical analysis of certain non-exhaustive requirements of NC RfG	101
3.10.1	Frequency ranges (article 13(1)(a)(ii))	101
3.10.2	RoCoF (article 13(1)(b))	103
3.10.3	LFSM-O (articles 13(2)(c), 13(2)(d))	104
3.10.4	LFSM-O (articles 13(2)(b), 13(2)(f))	105
3.10.5	Admissible active power reduction (article 13(4))	106
3.10.6	Admissible active power reduction (article 13(5))	107
3.10.7	Automatic connection (article 13(7))	108
3.10.8	Frequency sensitive mode – FSM (article 15(2)(c))	108
3.10.9	Frequency sensitive mode (article 15(2)(d)(i))	110
3.10.1	0 Frequency sensitive mode (article 15(2)(d)(iii))	113
3.10.1	1 Frequency sensitive mode (article 15(2)(d)(iv))	114
3.10.12	2 Frequency sensitive mode (article 15(2)(d)(v))	115
3.10.13	3 Frequency restoration control (article 15(2)(e))	116
3.10.14	4 Real time monitoring (article 15(2)(g))	116
3.10.1	5 Rates of change of active power output (article 15(6)(e))	118
4	NC DCC Implementation	120
4.1	Number of implemented non-exhaustive requirements in NC DCC	120
4.2	Frequency Issues of NC DCC	121
4.3	Voltage Issues of NC DCC	134
4.4	System Restoration Issues of NC DCC	147
4.5	Instrumentation, Simulation Models and Protection Issues of NC DCC	160

5	NC HVDC Implementation
5.1	Number of implemented non-exhaustive requirements in NC HVDC
5.2	Frequency Issues (1) of NC HVDC174
5.3	Frequency Issues (2) of NC HVDC
5.4	Voltage Issues of NC HVDC200
5.5	System Restoration Issues of NC HVDC213
5.6	Instrumentation, Simulation Models and Protection Issues of NC HVDC226
6	Annex239
6.1	Findings on Fault-Ride-Through Capability according to NC RfG article 14(3)(a)(i)239
6.1.1	FRT criteria for SPGMs of type B/C239
6.1.2	FRT criteria for PPMs of type B/C242
6.2	Findings on Fault-Ride-Through Capability according to NC RfG article 16(3)(a)(i)245
6.2.1	FRT criteria for SPGMs of type D245
6.2.2	FRT criteria for PPMs of type D248
6.3	Conclusions on implementation status of RfG FRT capabilities of type B/C/D251
6.4	Findings on Fault-Ride-Through Capability according to NC HVDC article 25(1)(a)(i)252
6.4.1	FRT criteria for HVDC converter stations
6.5	Conclusions on implementation status of HVDC converter stations' FRT capabilities254
6.6	References of examined non-exhaustive requirements linked to CNC articles254
7	Conclusion
7.1	Conclusion on implementation status of NC RfG capabilities
7.2	Conclusion on implementation status of NC DCC capabilities270
7.3	Conclusion on implementation status of NC HVDC capabilities

Final Version | 1 December 2020

EXECUTIVE SUMMARY

In the framework of its legal mandate to monitor the implementation of the Connection Network Codes (CNCs) in the European Union Member States, ENTSO-E redacted the second edition of its Implementation Monitoring Report (IMR). This document summarizes the findings related to the implementation of the CNCs across United Europe, focusing on the approved proposals of the non-exhaustive requirements. The IMR assesses and presents the data that have been submitted by the relevant TSO experts from each Member State and highlights, where applicable, divergencies. The second edition is released together with a detailed-Excel table that includes all values and ranges for non-exhaustive requirements.

As particular feature of the current IMR, the Annex offers the comparison in tabular form of the different Fault Ride-Through parameters for different types of Power Generating Module together with a general of the implementation of these requirements across Member summary States. In general, the 2020 monitoring process has shown that implementation is well on track across all Member States. For the NC RfG only 4,43% of the mandatory non-exhaustive requirements as such have not been implemented followed by the NC DCC with 5,47% of the mandatory non-exhaustive requirements as such which have not been implemented. For the NC HVDC 10,63% of the mandatory non-exhaustive requirements as such have not been implemented.

Final Version | 1 December 2020

1 Objective and Scope

1.1 Background of the Monitoring Report derived from the legal Framework

ENTSO for Electricity (ENTSO-E) is obliged to monitor the implementation of the European Connection Network Codes (CNC) which has been established in each connection code:

- Commission Regulation (EU) 2016/631 of 14 April 2016 establishing a network code of requirements for grid connection of generators (**NC RfG**);
- Commission Regulation (EU) 2016/1388 of 17 August 2016 establishing a network code on demand connection (NC DCC); and
- Commission Regulation (EU) 2016/1447 of 26 August 2016 establishing a network code on requirements for grid connection of high voltage direct current systems and direct current connected power park modules (NC HVDC);

in accordance with Article 8(8) of Regulation (EC) No 714/2009.

Article 59 of NC RfG, Article 57 of NC DCC and Article 76 of NC HVDC define the monitoring process for implementation of the regulations:

- 1. ENTSO for Electricity shall monitor the implementation of this Regulation in accordance with Article 8(8) of Regulation (EC) No 714/2009. The monitoring shall cover in particular the following matters:
 - a) Identification of any divergences in the national implementation of this Regulation;
 - b) Assessment of whether the choice of values and ranges in the requirements applicable to power-generating modules under this Regulation continues to be valid.
- 2. The Agency for the Cooperation of Energy Regulators (ACER), in cooperation with ENTSO for Electricity, shall produce by 12 months after the entry into force of this Regulation a list of the relevant information to be communicated by ENTSO for Electricity to the Agency in accordance with Article 8(9) and Article 9(1) of Regulation (EC) No 714/2009. The list of relevant information may be subject to updates. ENTSO for Electricity shall maintain a comprehensive, standardised format, digital data archive of the information required by the Agency.
- 3. Relevant TSOs shall submit to ENTSO for Electricity the information required to perform the tasks referred to in paragraphs 1 and 2.

The ENTSO-E Implementation Monitoring Report – hereinafter called the Report or IMR – analyses and provides an overview of the national implementation status of NC RfG, NC DC and NC HVDC. Country-wise divergences between the national implementation of Network Codes and the Connection Network Codes themselves are identified and presented.

Final Version | 1 December 2020

2 Input Data for the Report

2.1 Approach of 2020 Implementation Monitoring Report

The 2020 IMR focuses on the timing of implementation of the non-exhaustive requirements of the Connection Network Codes. CNC implementation can be either as general implementation on a national level or site-specific implementation for realization of a specific project.

A non-exhaustive requirement can be defined as such in the National Connection Network Code (**NCNC**) or later just before or during the specific project realization. The related non-exhaustive requirement's specific values or ranges can be additionally defined in the NCNC or project-specific e.g. in the grid connection agreement between the Transmission System Operator (**TSO**) and the Power Generating Facility Owner (**PGFO**) / system user. The definition of a non-exhaustive requirement such as values/ranges between general and site-specific implementation, is reflected through a graphical analysis among the participating TSOs. The outcome reveals the specific countries' approach to the fulfilment of non-exhaustive requirements as defined by the CNCs.

The 2020 IMR covers only the non-exhaustive requirements as implemented by the TSOs.

2.2 Introduction of the Report's Structure

The IMR chapters are clustered according to the three CNCs: NC RfG, NC DCC and NC HVDC. Each CNC is separated into four main issues:

- Frequency Issues,
- Voltage Issues,
- System Restoration Issues and
- Instrumentation, Simulation Models and Protection Issues

These include the relevant non-exhaustive requirements of these issues. Each issue represents a subsection within the related CNC chapter. The implementation status (as general/site-specific) of the non-exhaustive requirements for the related issue is presented according to the alphabetic order of the EU Member State. Each chapter starts with a numeric introduction of the implemented non-exhaustive requirements depicted in a bar chart. The x-axis lists the country codes, the y-axis the grand total of non-exhaustive requirements. On the right hand side of each bar chart the reference number of the related CNC can be read and compared to the individual solution of each country.

The structure of the NC RfG chapter slightly differs from the before mentioned general chapter structure of all three CNCs. Additionally, the NC RfG chapter starts with the country-wise comparison of the limit of the maximum capacity threshold from which a PGM is either of type B, C or D (please refer to section 3.1). For the benefit of the reader, a bar chart visualizes the differences between European TSOs and refers to the thresholds pursuant to article 5, table 1 of RfG distinguished by SAs. Table 1 in section 3.2, summarizes reasons for deviations from NC RfG as far as provided by TSOs in case of other chosen thresholds.

The examined non-exhaustive requirements which appear beneath the bar charts are referenced in the annex (section 6.6) of this report and directly linked to the respective articles of all 3 CNC for

Final Version | 1 December 2020

the benefit of the reader. The available Implementation Monitoring Report is based upon a survey which has been circulated among the Network Code Link Persons (**NCLPs**) of relevant TSOs. For further detailed information, which goes beyond the presented content of this Report it is referred to the <u>consolidated Monitoring Excel File</u> on ENTSO-E website.

The following subsections of each CNC, deal with implementation of the country specific nonexhaustive requirements' for each issue. A binary coding presentation for facilitating the graphical analysis of each general application vs. site-specific implementation has been chosen and will be explained in the following.

2.2.1 Introduction of binary coding approach for analysis of countries' non-exhaustive requirements' implementation status

Comparing the large number of the non-exhaustive requirements of several countries and three CNCs raises the challenge of providing a clear presentation in which the results are easy to understand.

Therefore, in order to facilitate a clear overview of the results of participating countries, a graphical approach based upon a binary coding strategy of the implementation status has been developed in the following way.

A country-specific evaluation bar chart lists the non-exhaustive requirements on the x-axis whereas the y-axis depicts the "general application" status of a non-exhaustive requirement as a positive oriented column, a "site-specific implementation" means a negative oriented non-exhaustive requirement of the corresponding country. A very flat column means no implementation of the considered requirement. In case of a missing column / a blank entry for a requirement, this requirement is treated as exhaustive in the regarding CNC and needs no further implementation on national level.

2.2.2 Example for interpretation of applied bar charts

The former definitions are illustrated in the example of the German implementation status of timing of proposal for NC RfG frequency issues in Figure 1 below.

Figure 1: Example bar chart for demonstration and interpretation of binary coding approach

Final Version | 1 December 2020

At the beginning of each subsection, the relevant CNC timing of the proposal for each issue is presented. This diagram serves as reference for comparison of the country specific application and implementation of the non-exhaustive requirements. This kind of presentation reveals derogations from the CNCs as well as among the participating TSOs and facilitates the comparison of compliance and non-compliance on national level to the CNCs.

2.3 Definitions

As source of recommendation if a non-exhaustive requirement is to be considered as "general implementation" or "site-specific implementation" it is referred to the published IGD "Parameters of non-exhaustive requirements". In the following subsections further definitions are listed.

2.3.1 Definition of a "non-exhaustive requirement as such" to be considered as general implementation

A non-exhaustive requirement is considered to be general if CNC demands this requirement to be implemented in the NCNC of the according country.

2.3.2 Definition of a "non-exhaustive requirement as such" to be considered as sitespecific implementation

A non-exhaustive requirement is considered to be site-specific if CNC demands fulfilment of requirement in due time of plant design, grid connection contract, commissioning or start of permanent operation at latest.

2.3.3 Definition of the "value/range of a non-exhaustive requirement" to be considered as general implementation

The value/range of a non-exhaustive requirement is considered to be general if CNC demands the value/range of the regarding non-exhaustive requirement to be implemented in the NCNC of according country.

2.3.4 Definition of the "value/range of a non-exhaustive requirement" to be considered as site-specific implementation

The value/range of a non-exhaustive requirement is considered to be site-specific if CNC demands fulfilment of value/range of the regarding non-exhaustive requirement in due time of plant design, grid connection contract, commissioning or start of permanent operation at latest.

Final Version | 1 December 2020

2.4 Other used acronyms

- CNC: Connection Network Code which are RfG, DCC, HVDC
- NCNC: National Connection Network Code as national implementation of the CNC
- RfG: Regulations for Generators
- DCC: Demand Connection Code
- HVDC: High Voltage Direct Current
- TSO: Transmission System Operator
- SA: Synchronous Area
- PGM: Power Generating Module
- SPGM: Synchronous Power Generating Module
- PPM: Power Park Module
- PGFO: Power-Generating Facility Owner
- NCLP: Network Code Link Person

Final Version | 1 December 2020

3 NC RfG Implementation

3.1 Capacity thresholds

Figure 2: Limit for max. capacity threshold from which PGM is of type B

Figure 3: Limit for max. capacity threshold from which PGM is of type C

Final Version | 1 December 2020

Figure 4: Limit for max. capacity threshold from which PGM is of type D

3.2 Information regarding RfG capacity threshold of PGM of type B/C/D

Country	SA	Information regarding capacity threshold limit for PGM of type B	Information regarding capacity threshold limit for PGM of type C	Information regarding capacity threshold limit for PGM of type D	Additional remarks
AT	CE	 Voltage control and reactive power management. FRT requirements. General system management Observability of small units (information exchange). 	 Voltage control and reactive power management. Remote active power control (e.g. for congestion management). 	 MV connections are typically in the range up to a maximum of 50 MW. HV connection will automatically become Type D. 	 General aspects for threshold selection: Alignment with existing grid codes (TOR). Characteristics of current and future national portfolio of generation units. Characteristics of the transmission and distribution system development (i.e. more decentralized power plants, more RES,).
BE	CE	_	_	_	_
BG	CE	-	_	-	-

Country	SA	Information regarding capacity threshold limit for PGM of type B	Information regarding capacity threshold limit for PGM of type C	Information regarding capacity threshold limit for PGM of type D	Additional remarks
CZ	CE	_	_	_	According to the national (state) energy conception (SEC) the most of new connected PGMs will be of types A and B, therefore the following categorization has been implemented: • A1/A2 – 11 kW • A2/B1 – 100 kW • B1/B2 – 1 MW • B2/C – 30 MW • C/D – 75 MW
DE	CE	 (Almost) all generators connected in LV are of type A and those connec- ted in MV are of type B. Due to the high RES generators at LV at MV, it is ensured that all MV generators are of type B and German LV connec- tion rules will go far beyond type A require- ments of RfG (e.g. intro- ducetion of FRT for type A). No extension of type B to LV connected generators (which would be possible by lowering the threshold even further), because of the certification for com- pliance, that comes up with type B. The total installed capaci- ty of all PGM's (that each have less than 1 MW) is approx. 38 GW. This sum is relevant for the overall system. Application and approval cost/effort must be consi- dered. In association with other German energy-market- laws the threshold needs to be chosen without creating disadvantages to other market participants. 	 Plants of this size are usually connected to the high voltage grid. In practice there are no type C generators - expect for the untypically large generators connected in MV. 	 All PGMs with a capacity > 45 MW are connected to > 110 kV and are therefore automatically of type D. Generators connected in HV and EHV are of type D. 	
DK	CE	_	_	_	_
DK	Nordic	_	_	_	_
EE	Baltic	_		_	_

Country	SA	Information regarding capacity threshold limit for PGM of type B	Information regarding capacity threshold limit for PGM of type C	Information regarding capacity threshold limit for PGM of type D	Additional remarks
ES	CE	 Several reasons can be found in the link attached in the remarks, but the main ones are: consistency with thre- sholds existing in current national regulation size and amount of the future power generating modules, mainly PPMs 	• Same as for type B	• Same as for type B	Justification document at: https://api.esios.ree.es/doc uments/354/download?loca le=es
FI	Baltic	-	-	-	-
FR	CE	-	-	-	-
GB	GB	_	_	-	_
GR	CE	-	-	-	-
HR	CE	_	_	_	-
HU	CE	-	-	-	-
IE&NI	IE	-	-	-	-
IT	CE	_	-	_	-
LT	Baltic	_	_	_	-
LU	CE	_	_	_	 Alignment with current connection requirements defined according the connected voltage level LV, MV and HV: (Almost) All LV connected generators to be of type A (Almost) All MV connected generators to be of type B (Currently) No generators of type C and D connected to HV Luxembourg is part of the German Market and intends to participate to the German balancing Market. In order to avoid any discrimination with type A,B generators connected to German TSO/DSO, we proposed to align the thresholds with Germany.
LV	Baltic	_	_	_	-
NL	CE	_	_	_	-
PL	CE	-	-	-	-
РТ	CE	-	-	-	 Fault-ride-through capa- bility similar to type B is requested for power ge- nerating modules with maximum capacity at or above 15 kW.

Country	SA	Information regarding capacity threshold limit for PGM of type B	Information regarding capacity threshold limit for PGM of type C	Information regarding capacity threshold limit for PGM of type D	Additional remarks
RO	CE	_	 The maximum limit for type B was set to the value of 5 MW compared to 50 MW declared in RfG, based upon the current generation structure and similarity with former technical requirements regarding power range. The former regulations for PGMs from 1 to 5 MW was similar to the present one for type B. Using the same range of installed power from 1 to 5 MW for similar requirements, the transition to RfG was easier for type B (maintaining same range specially for PPMs). 	 The limit between types C and D was set to 20 MW compared to 75 MW in order to respect the capacity generation structure of types C and D, the development forecasts of investments in SPGMs and future decommissioning, but also to ensure a continuity with the previous requirements. In former requirements, the following ranges have been defined: 5 to 10 MW for HPP, 5 to 20 MW for TPP or 5 to 10 MW for PPMs with requirements similar to type C. That means for generation capacity above 20 MW all PGMs had the same maximum technical demand (similar to current type D requirements). The highest value (20 MW) has been chosen in order to take into account the installed power trend in future PGMs and PPMs to have sufficient PGMs capable to ensure type D requirements. 	
SE	Nordic	-	-	-	-
SI	CE	 Voltage stability and control in distribution system (LV/MV). General system manage- ment: observability of small PGMs (information exchange) particularly for power system restoration and island operation. 	 Possibility of providing ancillary services: particu- larly important for RES, currently no regulating capabilities required. Frequency stability: LFSM-U and FSM. 	 Existing distribution grid code: PGMs above 10 MW are obliged to be connected to 110 kV level and above. Technical limitations of 	 Main criteria for determining thresholds between individual types: Alignment with existing distribution grid code: currently only 1 unit above 10 MW connected to distribution level, i.e. below 110 kV. Characteristics of current and future national port- folio of generation units. Characteristics of the transmission and distri- bution system develop- ment (i.e. more decentra- lized power plants, more RES,). Provision on security of operation (balancing re- serves) and system restoration.
SK	CE	 Need for generation 	 Generators connected to 	 Technical limitations of 	_

Final Version | 1 December 2020

3.3 Number of implemented non-exhaustive requirements in NC RfG

Figure 5: Reference total number of to be implemented RfG non-exhaustive requirements as such

Figure 6: Reference total number of to be implemented values/ranges of regarding RfG non-exhaustive requirements

Final Version | 1 December 2020

3.4 Frequency Issues of NC RfG

Figure 7: Reference values of non-exhaustive RfG frequency issues

Figure 8: Austria (AT)

Final Version | 1 December 2020

Non-exhaustive Requirements (RfG) of BE

Figure 9: Belgium (BE)

Non-exhaustive Requirements (RfG) of CZ - Frequency Issues -

Figure 10: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 11: Germany (DE)

Non-exhaustive Requirements (RfG) of DK CE

Figure 12: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 13: Denmark 2 (DK-Nordic)

Non-exhaustive Requirements (RfG) of EE - Frequency Issues -

Figure 14: Estonia (EE)

Final Version | 1 December 2020

Non-exhaustive Requirements (RfG) of ES

Figure 15: Spain (ES)

Non-exhaustive Requirements (RfG) of FI

Figure 16: Finland (FI)

Final Version | 1 December 2020

Figure 17: France (FR)

Non-exhaustive Requirements (RfG) of GB - Frequency Issues -

Figure 18: Great Britain (GB)

Final Version | 1 December 2020

Figure 19: Greece (GR)

Non-exhaustive Requirements (RfG) of HR - Frequency Issues -

Figure 20: Croatia (HR)

Final Version | 1 December 2020

Non-exhaustive Requirements (RfG) of HU

Figure 21: Hungary (HU)

Non-exhaustive Requirements (RfG) of IE

Figure 22: Ireland (IE)

Final Version | 1 December 2020

Figure 23: Italy (IT)

Figure 24: Lithuania (LT)

Final Version | 1 December 2020

Figure 25: Luxembourg (LU)

Figure 26: Latvia (LV)

Final Version | 1 December 2020

Figure 27: Netherlands (NL)

Non-exhaustive Requirements (RfG) of PL - Frequency Issues -

Figure 28: Poland (PL)

Final Version | 1 December 2020

Figure 29: Portugal (PT)

Non-exhaustive Requirements (RfG) of RO

Figure 30: Romania (RO)

Final Version | 1 December 2020

Figure 31: Sweden (SE)

Non-exhaustive Requirements (RfG) of SI - Frequency Issues -

Figure 32: Slovenia (SI)

Figure 33: Slovakia

Final Version | 1 December 2020

3.5 Voltage Issues (1) – FRT according to Article 14(3) of NC RfG

Reference Values non-exhaustive Requirements (RfG) of RfG - Voltage Issues (1): FRT Article 14.3 -

Figure 34: Reference values of non-exhaustive RfG voltage issues (1) - FRT article 14.3

Figure 35: Austria (AT)

Final Version | 1 December 2020

Figure 36: Belgium (BE)

Non-exhaustive Requirements (RfG) of CZ

Figure 37: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 38: Germany (DE)

Non-exhaustive Requirements (RfG) of DK CE

Figure 39: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 40: Denmark 2 (DK-Nordic)

Non-exhaustive Requirements (RfG) of EE

Figure 41: Estonia (EE)

Final Version | 1 December 2020

Figure 42: Spain (ES)

Non-exhaustive Requirements (RfG) of ES

Figure 43: Spain (ES)

Final Version | 1 December 2020

Figure 44: Finland (FI)

Non-exhaustive Requirements (RfG) of FR

Figure 45: France (FR)

Final Version | 1 December 2020

Figure 46: Great Britain (GB)

Non-exhaustive Requirements (RfG) of GR

Figure 47: Greece (GR)

Final Version | 1 December 2020

Figure 48: Croatia

Non-exhaustive Requirements (RfG) of HU

Figure 49: Hungary (HU)

Final Version | 1 December 2020

Figure 50: Ireland

Non-exhaustive Requirements (RfG) of IT

Figure 51: Italy (IT)

Final Version | 1 December 2020

Figure 52: Lithuania (LT)

Non-exhaustive Requirements (RfG) of LU

Figure 53: Luxembourg (LU)

Final Version | 1 December 2020

Figure 54: Latvia (LV)

Non-exhaustive Requirements (RfG) of NL

Figure 55: Netherlands (NL)

Final Version | 1 December 2020

Non-exhaustive Requirements (RfG) of PL - Voltage Issues (1): FRT Article 14.3 -

Figure 56: Poland (PL)

Non-exhaustive Requirements (RfG) of PT

Figure 57: Portugal (PT)

Final Version | 1 December 2020

Figure 58: Romania (RO)

Non-exhaustive Requirements (RfG) of SE

Figure 59: Sweden (SE)

Final Version | 1 December 2020

Figure 60: Slovenia (SI)

Non-exhaustive Requirements (RfG) of SK

Figure 61: Slovakia (SK)

Final Version | 1 December 2020

3.6 Voltage Issues (2) – FRT according to Article 16(3) of NC RfG

Non-exhaustive Requirements (RfG) of RfG - Voltage Issues (2): FRT Article 16.3 general application ^ PPM: Urec2 Urec2 SPGM: Urec trec1 Uret Urec. trec SPGM: Urec Uclear Urec1 tclear trec. SPGM: Urec ity (MVA): sity (MVA) PPM: SPGM: SPGM: 1 SPGM: SPGM: PPM: 1 PPM: PPM: PPM: SPGM: SPGM: SPGM: PPM: SPGM PGM: I SPGM: SPGM: PPM: PPM: ection SPGM: L SPGM: PPM: PPM: PPM: PPM: PPM: PPM: PPM roltage short fault pre-fault minimum prepre-fault active eactive pre-fault post Non-exhaustive Requirements as such: Voltage Issues

Figure 62: : Reference values of non-exhaustive RfG voltage issues (2) - FRT article 16.3

Figure 63: Austria (AT)

Final Version | 1 December 2020

Figure 64: Belgium (BE)

Non-exhaustive Requirements (RfG) of CZ

Figure 65: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 66: Germany (DE)

Non-exhaustive Requirements (RfG) of DK CE

Figure 67: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 68: Denmark 2 (DK-Nordic)

Non-exhaustive Requirements (RfG) of EE

Figure 69: Estonia (EE)

Final Version | 1 December 2020

Figure 70: Spain (ES)

Non-exhaustive Requirements (RfG) of FI

Figure 71: Finland (FI)

Final Version | 1 December 2020

Figure 72: France (FR)

Non-exhaustive Requirements (RfG) of GB

Figure 73: Great Britain (GB)

Final Version | 1 December 2020

Figure 74: Greece (GR)

Non-exhaustive Requirements (RfG) of HR

Figure 75: Croatia (HR)

Final Version | 1 December 2020

Figure 76: Hungary (HU)

Non-exhaustive Requirements (RfG) of IE

Figure 77: Ireland (IE)

Final Version | 1 December 2020

Figure 78: Italy (IT)

Non-exhaustive Requirements (RfG) of LT

Figure 79: Lithuania (LT)

Final Version | 1 December 2020

Figure 80: Luxembourg (LU)

Non-exhaustive Requirements (RfG) of LV

Figure 81: Latvia (LV)

Final Version | 1 December 2020

Figure 82: Netherlands (NL)

Non-exhaustive Requirements (RfG) of PL

Figure 83: Poland (PL)

Final Version | 1 December 2020

Figure 84: Portugal (PT)

Non-exhaustive Requirements (RfG) of RO

Figure 85: Romania (RO)

Final Version | 1 December 2020

Figure 86: Sweden (SE)

Non-exhaustive Requirements (RfG) of SI

Figure 87: Slovenia (SI)

Final Version | 1 December 2020

Figure 88: Slovakia (SK)

Final Version | 1 December 2020

3.7 Voltage Issues (3) – Voltage Ranges PGM, Reactive Power SPGM/PPM

Non-exhaustive Requirements (RfG) of RfG - Voltage Issues (3): Voltage Ranges PGM, Reactive Power SPGM/PPM site-specific implementation <-- --> general application may be. operation 0.90pu-1.05pt operation 0.90pu-1.10pu 1.05pu-1.10pu ime period for operation 0.90pu-1.118pu time period for operation 1.118pu-1.15pu shorter time period in the event of simultaneou wider voltage range s for operation may be agreed ration 0.85pu-0.90pu operation 0.88pu-0.90pu time period for operation 0.90pu-1.05pu ime period for operation 0.90pu-1.097pu time period for operation 1.05pu-1.10pu ime period for operation 1.097pu-1.15pu time period in the event of simultaneous time period in the event of simultaneous U-Q/Pmax-profile at maximum capacity ration 0.85pu-0.90p capability to supply or absorb reactive pow any operating pol which 100% of the change anv operating po 30% of the change in react Itary reactive power voltage deviat how the voltage deviation is determ timing of fast fault current injection which accuracy of fast fault current injection which i shorter time period in the event of simulta set target power ability to supply or absorb reactive periods for operation deviation is det treshold above which PSS function atic voltage characteristics of fast fault current ach the time period for operation the end of the eters and settings of the appropriate time scale to reach period for oper specifications of the auton when the voltage period for c for time period for wider voltage ranges for time per U-Q/Pmax-profile definition of suppl period 1 definition of suppl period time opriate time scale within which U-Q/Pm minimum pedification for nimum time time time time ter t2: hich ime parame onger hor onger Non-exhaustive Requirements as such: Voltage Issues

Figure 89: Reference values of non-exhaustive RfG voltage issues (3) - voltage ranges PGM, reactive power SPGM/PPM

Figure 90: Austria (AT)

Final Version | 1 December 2020

Figure 91: Belgium (BE)

Figure 92: Czech Republic (CZ)

Final Version | 1 December 2020

Non-exhaustive Requirements (RfG) of DE - Voltage Issues (3): Voltage Ranges PGM, Reactive Power SPGM/PPM -

Figure 93: Germany (DE)

Figure 94: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 95: Denmark 2 (DK-Nordic)

Non-exhaustive Requirements (RfG) of EE - Voltage Issues (3): Voltage Ranges PGM, Reactive Power SPGM/PPM site-specific implementation <-- --> general application wider voltage ranges for operation may be agreed. itary reactive power to. um capacity perating point. ients of the. treshold above which PSS function must be. i capadity pperating point. ge in reactive. period for operation 1.05pu-1.10pu nav he time period for operation 1.05pu-1.10pu periods for operation may be capability to supply or absorb reactive power age regulator period for operation 0.90pu-1.05pu operation 0.90pu-1.10pu time period for operation 0.90pu-1.118pu operation 1.118pu-1.15pu may be agreed period for operation 0.90pu-1.05pu ability to supply or absorb reactive power ion is determined change in operation 0.85pu-0.90pt ime period for operation 0.90pu-1.097pu period for operation 1.097pu-1.15pu which may which may the event of simultaneou on is determi time period in the event of simultane shorter time period in the event of simultan the event of simult timing of fast fault current injectior characteristics of fast fault cur within which 90% of the cha uracy of fast fault current inje U-Q/Pmax-profile at m how the voltage deviati which 100% specifications of the automatic the end of the periods for U-Q/Pmax-profile below parameter s and settings of the when the voltage devi opriate time scale to reach scale to reach dification for asymmetrical wider voltage ranges for oper period for period for time period for period for period for shorter time period in time period in definition of supple within time U-Q/Pmax minimum time which reactive which a tion of irther appropriate time time time time time time time time time lefini t2: shorter horter ime onger onger Non-exhaustive Requirements as such: Voltage Issue

Figure 96: Estonia (EE)

Final Version | 1 December 2020

Figure 97: Spain (ES)

Figure 98: Finland (FI)

Final Version | 1 December 2020

Non-exhaustive Requirements (RfG) of FR - Voltage Issues (3): Voltage Ranges PGM, Reactive Power SPGM/PPM -

Figure 99: France (FR)

Figure 100: Great Britain (GB)

Final Version | 1 December 2020

Figure 101: Greece (GR)

Figure 102: Croatia (HR)

Final Version | 1 December 2020

Figure 103: Hungary (HU)

Figure 104: Ireland (IE)

Final Version | 1 December 2020

Figure 105: Italy (IT)

Figure 106: Lithuania (LT)

Final Version | 1 December 2020

Non-exhaustive Requirements (RfG) of LU - Voltage Issues (3): Voltage Ranges PGM, Reactive Power SPGM/PPM -

Figure 107: Luxembourg (LU)

Figure 108: Latvia (LV)

Final Version | 1 December 2020

Figure 109: Netherlands (NL)

Non-exhaustive Requirements (RfG) of PL

Figure 110: Poland (PL)

Final Version | 1 December 2020

Non-exhaustive Requirements (RfG) of PT - Voltage Issues (3): Voltage Ranges PGM, Reactive Power SPGM/PPM -

Figure 111: Portugal (PT)

Figure 112: Romania (RO)

Final Version | 1 December 2020

Figure 113: Sweden (SE)

Figure 114: Slovenia (SI)

Final Version | 1 December 2020

Figure 115: Slovakia (SK)

Final Version | 1 December 2020

3.8 System Restoration Issues of NC RfG

Non-exhaustive Requirements (RfG) of RfG - System Restoration Issues -<-- --> general application 16.2 site-specific implementation on time within which the PGM rame within which the PGM is capable starting from shutdown without any external electrical energy supply n article black o latic recon operating after tripping to houseload active cau sed for for when the post-fault recovery begins ons for reconnection to the nel incidental disconnection cau by network disturbance technical specifications for a quotation capability ax. allowed recovery magnitude and accu power recovery r synchronisation w does not apply and time conditions for autom recovery the max. a power reitude power limits for capable specificatio specification o the voltage l Non-exhaustive Requirements as such: System Restoration Issues

Figure 116: Reference values of non-exhaustive RfG - system restoration issues

Figure 117: Austria (AT)

Final Version | 1 December 2020

Figure 118: Belgium (BE)

Non-exhaustive Requirements (RfG) of CZ

Figure 119: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 120: Germany (DE)

Non-exhaustive Requirements (RfG) of DK CE

Figure 121: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 122: Denmark 2 (DK-Nordic)

Figure 123: Estonia (EE)

Final Version | 1 December 2020

Figure 124: Spain (ES)

Non-exhaustive Requirements (RfG) of FI

Figure 125: Finland (FI)

Final Version | 1 December 2020

Figure 126: France (FR)

Non-exhaustive Requirements (RfG) of GB

Figure 127: Great Britain (GB)

Final Version | 1 December 2020

Figure 128: Greece (GR)

Non-exhaustive Requirements (RfG) of HR

Figure 129: Croatia (HR)

Final Version | 1 December 2020

Figure 130: Hungary (HU)

Non-exhaustive Requirements (RfG) of IE

Figure 131: Ireland (IE)

Final Version | 1 December 2020

Figure 132: Italy (IT)

Non-exhaustive Requirements (RfG) of LT

Figure 133: Lithuania (LT)

Final Version | 1 December 2020

Figure 134: Luxembourg (LU)

Non-exhaustive Requirements (RfG) of LV

Figure 135: Latvia (LV)

Final Version | 1 December 2020

Figure 136: Netherlands (NL)

Non-exhaustive Requirements (RfG) of PL

Figure 137: Poland (PL)

Final Version | 1 December 2020

Figure 138: Portugal (PT)

Non-exhaustive Requirements (RfG) of RO

Figure 139: Romania (RO)

Final Version | 1 December 2020

Figure 140: Sweden (SE)

Figure 141: Slovenia (SI)

Final Version | 1 December 2020

Figure 142: Slovakia (SK)

Final Version | 1 December 2020

3.9 Instrumentation, Simulation Models and Protection Issues of NC RfG

Non-exhaustive Requirements (RfG) of RfG - Instrumentation Simulation Models & Protection Issues -<-- --> general application site-specific implementation ertia definition of the op sy stems to pro Drecise ettines of of the precise ins of the neutral point at the agreement for technian aid an tolerance to reach the tion of the tre shole detect los ratesof settings of criteria of pedfic each definition of the aut Dedficatio where the criteria to pec uch: Instrumentation Simulation Models & Protection Issues

Figure 143: Reference values of non-exhaustive RfG - instrumentation, simulation , models and protection issues

Figure 144: Austria (AT)

Final Version | 1 December 2020

Figure 145: Belgium (BE)

Figure 146: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 147: Germany (DE)

Non-exhaustive Requirements (RfG) of DK CE

Figure 148: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 149: Denmark 2 (DK-Nordic)

Figure 150: Estonia (EE)

Final Version | 1 December 2020

Figure 151: Spain (ES)

Non-exhaustive Requirements (RfG) of FI

Figure 152: Finland (FI)

Final Version | 1 December 2020

Figure 153: France (FR)

Non-exhaustive Requirements (RfG) of GB

Figure 154: Great Britain (GB)

Final Version | 1 December 2020

Figure 155: Greece (GR)

Figure 156: Croatia (HR)

Final Version | 1 December 2020

Figure 157: Hungary (HU)

Non-exhaustive Requirements (RfG) of IE

Figure 158: Ireland (IE)

Final Version | 1 December 2020

Figure 159: Italy (IT)

Figure 160: Lithuania (LT)

Final Version | 1 December 2020

Figure 161: Luxembourg (LU)

Figure 162: Latvia (LV)

Final Version | 1 December 2020

Figure 163: Netherlands (NL)

Non-exhaustive Requirements (RfG) of PL

Figure 164: Poland (PL)

Final Version | 1 December 2020

Figure 165: Portugal (PT)

Non-exhaustive Requirements (RfG) of RO

Figure 166: Romania (RO)

Final Version | 1 December 2020

Figure 167: Sweden (SE)

Figure 168: Slovenia (SI)

Final Version | 1 December 2020

Figure 169: Slovakia (SK)

ENTSO-E | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e

Final Version | 1 December 2020

3.10 Specific statistical analysis of certain non-exhaustive requirements of NC RfG

The following subsections present statistical analysis of selected non-exhaustive requirements These results represent the current national implementation process of EU Member Countries.

3.10.1 Frequency ranges (article 13(1)(a)(ii))

From the NC RfG: (*ii*) the relevant system operator, in coordination with the relevant TSO, and the power-generating facility owner may agree on wider frequency ranges, longer minimum times for operation or specific requirements for combined frequency and voltage deviations to ensure the best use of the technical capabilities of a power generating module, if it is required to preserve or to restore system security;

Figure 170: Potential wider frequency ranges

Final Version | 1 December 2020

- commissioning at latest
- NI-A: No consideration
- NI-B: TSO internal consideration
- NI-F: not applicable
- Unfilled

Figure 171: Potential longer minimum times

Figure 172: Specific requirements for frequency and voltage deviations

Final Version | 1 December 2020

RoCoF (article 13(1)(b)) 3.10.2

From the NC RfG: With regard to the rate of change of frequency withstand capability, a powergenerating module shall be capable of staying connected to the network and operate at rates of change of frequency up to a value specified by the relevant TSO, unless disconnection was triggered by rate-of-change-of-frequency-type loss of mains protection. The relevant system operator, in coordination with the relevant TSO, shall specify this rate-of-change-of-frequency-type loss of mains protection.

- NI-C: preliminary, shared with stakeholders, but not publicly available

Specify RoCoF of the loss of main protection

Figure 174: Specifiy RoCoF of the loss of main protection

Final Version | 1 December 2020

3.10.3 LFSM-O (articles 13(2)(c), 13(2)(d))

From the NC RfG: With regard to the limited frequency sensitive mode – overfrequency (LFSM-O), the following shall apply, as determined by the relevant TSO for its control area in coordination with the TSOs of the same synchronous area to ensure minimal impacts on neighbouring areas:

(c) the frequency threshold shall be between 50,2 Hz and 50,5 Hz inclusive;

(d) the droop settings shall be between 2 % and 12 %;

G: Requirement generally implemented in National Implementation in accordance to NC

 S: Requirement to be site-specifically implemented in due time before plant design (e.g. grid connection agreement) / commissioning at latest

Figure 175: LFSM-O - Frequency threshold

S: Requirement to be site-specifically implemented in due time before plant design (e.g. grid conr agreement) / commissioning at latest

Figure 176: LFSM-O - Droop settings

Final Version | 1 December 2020

3.10.4 LFSM-O (articles 13(2)(b), 13(2)(f))

From the NC RfG: (b) instead of the capability referred to in paragraph (a), the relevant TSO may choose to allow within its control area automatic disconnection and reconnection of power-generating modules of Type A at randomised frequencies, ideally uniformly distributed, above a frequency threshold, as determined by the relevant TSO where it is able to demonstrate to the relevant regulatory authority, and with the cooperation of power-generating facility owners, that this has a limited cross-border impact and maintains the same level of operational security in all system states;

(f) the relevant TSO may require that upon reaching minimum regulating level, the powergenerating module be capable of either: (i) continuing operation at this level; or (ii) further decreasing active power output;

Figure 177: LFSM-O - Use of automatic disconnection and reconnection

Figure 178: LFSM-O - Expected behaviour of the PGM once the regulating minimum level is reached

Final Version | 1 December 2020

3.10.5 Admissible active power reduction (article 13(4))

From the NC RfG: The relevant TSO shall specify admissible active power reduction from maximum output with falling frequency in its control area as a rate of reduction falling within the boundaries, illustrated by the full lines in Figure 2:

(a) below 49 Hz falling by a reduction rate of 2 % of the maximum capacity at 50 Hz per 1 Hz frequency drop;

(b) below 49,5 Hz falling by a reduction rate of 10 % of the maximum capacity at 50 Hz per 1 Hz frequency drop.

Figure 179: Admissible active power reduction from max. output with falling frequency

Final Version | 1 December 2020

3.10.6 Admissible active power reduction (article 13(5))

From the NC RfG: The admissible active power reduction from maximum output shall:

(a) clearly specify the ambient conditions applicable;

(b) take account of the technical capabilities of power-generating modules.

Figure 180: Definition of the ambient conditions

Final Version | 1 December 2020

3.10.7 Automatic connection (article 13(7))

From the NC RfG: The relevant TSO shall specify the conditions under which a power-generating module is capable of connecting automatically to the network. Those conditions shall include:

(a) frequency ranges within which an automatic connection is admissible, and a corresponding delay time; and

(b) maximum admissible gradient of increase in active power output.

Automatic connection is allowed unless specified otherwise by the relevant system operator in coordination with the relevant TSO.

Figure 181: Conditions for automatic connection to the network regarding frequency ranges

3.10.8 Frequency sensitive mode – FSM (article 15(2)(c))

From the NC RfG: In addition to Article 13(2), the following requirements shall apply to type C power-generating modules with regard to limited frequency sensitive mode — underfrequency (LFSM-U):

(i) the power-generating module shall be capable of activating the provision of active power frequency response at a frequency threshold and with a droop specified by the relevant TSO in coordination with the TSOs of the same synchronous area as follows:

- the frequency threshold specified by the TSO shall be between 49,8 Hz and 49,5 Hz inclusive,

Final Version | 1 December 2020

- the droop settings specified by the TSO shall be in the range 2-12 %.

G: Requirement generally implemented in National Implementation in accordance to NC

 S: Requirement to be site-specifically implemented in due time before plant design (e.g. grid connection agreement) / commissioning at latest

Figure 182: LFSM-U - Frequency threshold

G: Requirement generally implemented in National Implementation in accordance to NC

 S: Requirement to be site-specifically implemented in due time before plant design (e.g. grid connection agreement) / commissioning at latest

Figure 183: LFSM-U - Droop settings

Final Version | 1 December 2020

Figure 184: LFSM-U - Definition of Pref

3.10.9 Frequency sensitive mode (article 15(2)(d)(i))

From the NC RfG: *in addition to point (c) of paragraph 2, the following shall apply cumulatively when frequency sensitive mode ('FSM') is operating:*

(i) the power-generating module shall be capable of providing active power frequency response in accordance with the parameters specified by each relevant TSO within the ranges shown in Table 4. In specifying those parameters, the relevant TSO shall take account of the following facts:

— in case of overfrequency, the active power frequency response is limited by the minimum regulating level,

- in case of underfrequency, the active power frequency response is limited by maximum capacity,

— the actual delivery of active power frequency response depends on the operating and ambient conditions of the power-generating module when this response is triggered, in particular limitations on operation near maximum capacity at low frequencies according to paragraphs 4 and 5 of Article 13 and available primary energy sources;

Final Version | 1 December 2020

Figure 185: FSM - Active power range related to maximum capacity

Figure 186: FSM - Frequency response insensitivity

Final Version | 1 December 2020

 S: Requirement to be site-specifically implemented in due time before plant design (e.g. grid connection agreement) / commissioning at latest

Figure 187: FSM - Frequency response dead band

FSM: Droop settings

agreement) / commissioning at latest

Figure 188: Droop settings

Final Version | 1 December 2020

3.10.10 Frequency sensitive mode (article 15(2)(d)(iii))

From the NC RfG: in the event of a frequency step change, the power-generating module shall be capable of activating full active power frequency response, at or above the full line shown in Figure 6 in accordance with the parameters specified by each TSO (which shall aim at avoiding active power oscillations for the power-generating module) within the ranges given in Table 5. The combination of choice of the parameters specified by the TSO shall take possible technology-dependent limitations into account;

Figure 189: FSM - Maximum admissible full activation time

Final Version | 1 December 2020

3.10.11 Frequency sensitive mode (article 15(2)(d)(iv))

From the NC RfG:

the initial activation of active power frequency response required shall not be unduly delayed.

If the delay in initial activation of active power frequency response is greater than two seconds, the power-generating facility owner shall provide technical evidence demonstrating why a longer time is needed.

For power-generating modules without inertia, the relevant TSO may specify a shorter time than two seconds. If the power-generating facility owner cannot meet this requirement they shall provide technical evidence demonstrating why a longer time is needed for the initial activation of active power frequency response;

Figure 190: FSM - Maximum admissible initial delay for PGMs without inertia

Final Version | 1 December 2020

3.10.12 Frequency sensitive mode (article 15(2)(d)(v))

From the NC RfG:

the power-generating module shall be capable of providing full active power frequency response for a period of between 15 and 30 minutes as specified by the relevant TSO. In specifying the period, the TSO shall have regard to active power headroom and primary energy source of the powergenerating module;

Figure 191: FSM - Time period for the provision of full active power frequency response

Final Version | 1 December 2020

3.10.13 Frequency restoration control (article 15(2)(e))

From the NC RfG: with regard to frequency restoration control, the power-generating module shall provide functionalities complying with specifications specified by the relevant TSO, aiming at restoring frequency to its nominal value or maintaining power exchange flows between control areas at their scheduled values;

Figure 192: Frequency restoration control

3.10.14 Real time monitoring (article 15(2)(g))

From the NC RfG: (*i*) to monitor the operation of active power frequency response, the communication interface shall be equipped to transfer in real time and in a secured manner from the power-generating facility to the network control centre of the relevant system operator or the relevant TSO, at the request of the relevant system operator or the relevant TSO, at least the following signals:

(ii) the relevant system operator and the relevant TSO shall specify additional signals to be provided by the power- generating facility by monitoring and recording devices in order to verify the performance of the active power frequency response provision of participating power-generating modules.

Final Version | 1 December 2020

NI-C: preliminary, shared with stakeholders, but not publicly available

Figure 193: Real-time monitoring of FSM

NI-B: TSO internal consideration

- NI-F: not applicable
- Unfilled
- NI-C: preliminary, shared with stakeholders, but not publicly available

Figure 194: Real-time monitoring of FSM

Final Version | 1 December 2020

3.10.15 Rates of change of active power output (article 15(6)(e))

From the NC RfG: the relevant system operator shall specify, in coordination with the relevant TSO, minimum and maximum limits on rates of change of active power output (ramping limits) in both an up and down direction of change of active power output for a power-generating module, taking into consideration the specific characteristics of prime mover technology;

NI-B: TSO internal consideration

Figure 195: Minimum limit of change of active power output in down direction

Figure 196: Maximum change of active power output in down direction

Final Version | 1 December 2020

Figure 197: Minimum limit of change of active power output in up direction

Figure 198: Maximum limit of change of active power output in up direction

Final Version | 1 December 2020

4 NC DCC Implementation

4.1 Number of implemented non-exhaustive requirements in NC DCC

Final Version | 1 December 2020

4.2 Frequency Issues of NC DCC

Figure 201: Reference values of non-exhaustive DCC frequency issues

Figure 202: Austria (AT)

Final Version | 1 December 2020

Figure 203: Belgium (BE)

Figure 204: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 205: Germany (DE)

Figure 206: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 207: Denmark 2 (DK-Nordic)

Figure 208: Estonia (EE)

Final Version | 1 December 2020

Figure 209: Finland (FI)

Figure 210: France (FR)

Final Version | 1 December 2020

Figure 211: Great Britain (GB)

Figure 212: Greece (GR)

Final Version | 1 December 2020

Figure 213: Croatia (HR)

Non-exhaustive Requirements (DCC) of HU

Figure 214: Hungary (HU)

Final Version | 1 December 2020

Figure 215: Ireland (IE)

Figure 216: Italy (IT)

Final Version | 1 December 2020

Figure 217: Lithuania (LT)

Figure 218: Luxembourg (LU)

Final Version | 1 December 2020

Figure 219: Latvia (LV)

Figure 220: Netherlands (NL)

Final Version | 1 December 2020

Figure 221: Poland (PL)

Figure 222: Portugal (PT)

Final Version | 1 December 2020

Figure 223: Romania (RO)

Figure 224: Sweden (SE)

Final Version | 1 December 2020

Figure 225: Slovenia (SI)

Figure 226: Slovakia (SK)

Final Version | 1 December 2020

4.3 Voltage Issues of NC DCC

Figure 227: Reference values of non-exhaustive DCC – voltage issues

Figure 228: Austria (AT)

Final Version | 1 December 2020

Figure 229: Belgium (BE)

Non-exhaustive Requirements (DCC) of CZ

Figure 230: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 231: Germany (DE)

Non-exhaustive Requirements (DCC) of DK CE

Figure 232: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 233: Denmark 2 (DK-Nordic)

Figure 234: Estonia (EE)

Final Version | 1 December 2020

Figure 235: Finland (FI)

Non-exhaustive Requirements (DCC) of FR

Figure 236: France (FR)

Final Version | 1 December 2020

Figure 237: Great Britain (GB)

Non-exhaustive Requirements (DCC) of GR

Figure 238: Greece (GR)

Final Version | 1 December 2020

Figure 239: Croatia (HR)

Non-exhaustive Requirements (DCC) of HU

Figure 240: Hungary (HU)

Final Version | 1 December 2020

Figure 241: Ireland (IE)

Non-exhaustive Requirements (DCC) of IT

Figure 242: Italy (IT)

Final Version | 1 December 2020

Figure 243: Lithuania (LT)

Non-exhaustive Requirements (DCC) of LU

Figure 244: Luxembourg (LU)

Final Version | 1 December 2020

Figure 245: Latvia (LV)

Non-exhaustive Requirements (DCC) of NL

Figure 246: Netherlands (NL)

Final Version | 1 December 2020

Figure 247: Poland (PL)

Figure 248: Portugal (PT)

Final Version | 1 December 2020

Figure 249: Romania (RO)

Figure 250: Sweden (SE)

Final Version | 1 December 2020

Figure 251: Slovenia (SI)

Figure 252: Slovakia (SK)

Final Version | 1 December 2020

4.4 System Restoration Issues of NC DCC

Non-exhaustive Requirements (DCC) of DCC - System Restoration Issues -<--- --> general application threshold of the maximum short circuit current nducing an information from the TC DF or TC DSO in case of a change above this threshold (unplanned threshold of the maximum short circuit current inducing an information from the TSO in case of a change above this threshold (unplanned events) threshold of the maximum short circuit current inducing an information from the TSO in case of a change above this threshold (planned events) threshold of the maximum short circuit current inducing an information from the TC DF or TC DSO in case of a change above this threshold (planned site-specific implementation definition of the LVDD sch ŝ definition of the LVDD atic on load tap changer blocking Frequency Demand Disco (LFDD) scheme short-circuit current at the point to be withstood equipme inection events) ction events) settings of the synchron frequency, voltage, phase of voltage a ection e conditions for ated discor Non-exhaustive Require ents as such: System Restoration Issues

Figure 253: Reference values of non-exhaustive DCC – system restoration issues

Figure 254: Austria (AT)

Final Version | 1 December 2020

Figure 255: Belgium (BE)

Non-exhaustive Requirements (DCC) of CZ

Figure 256: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 257: Germany (DE)

Figure 258: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 259: Denmark 2 (DK-Nordic)

Non-exhaustive Requirements (DCC) of EE

Figure 260: Estonia (EE)

Final Version | 1 December 2020

Figure 261: Finland (FI)

Non-exhaustive Requirements (DCC) of FR - System Restoration Issues -

Figure 262: France (FR)

Final Version | 1 December 2020

Figure 263: Great Britain (GB)

Non-exhaustive Requirements (DCC) of GR - System Restoration Issues -

Figure 264: Greece (GR)

Final Version | 1 December 2020

Figure 265: Croatia (HR)

Non-exhaustive Requirements (DCC) of HU

Figure 266: Hungary (HU)

Final Version | 1 December 2020

Figure 267: Ireland (IE)

Non-exhaustive Requirements (DCC) of IT - System Restoration Issues -

Figure 268: Italy (IT)

Final Version | 1 December 2020

Figure 269: Lithuania (LT)

Non-exhaustive Requirements (DCC) of LU - System Restoration Issues -

Figure 270: Luxembourg (LU)

Final Version | 1 December 2020

Figure 271: Latvia (LV)

Non-exhaustive Requirements (DCC) of NL

Figure 272: Netherlands (NL)

Final Version | 1 December 2020

Figure 273: Poland (PL)

Non-exhaustive Requirements (DCC) of PT - System Restoration Issues -

Figure 274: Portugal (PT)

Final Version | 1 December 2020

Figure 275: Romania (RO)

Non-exhaustive Requirements (DCC) of SE

Figure 276: Sweden (SE)

Final Version | 1 December 2020

Figure 277: Slovenia (SI)

Non-exhaustive Requirements (DCC) of SK

Figure 278: Slovakia (SK)

Final Version | 1 December 2020

Instrumentation, Simulation Models and Protection Issues of NC DCC 4.5

Figure 279: Reference values of non-exhaustive DCC - instrumentation, simulation ,models and protection issues

Non-exhaustive Requirements (DCC) of AT

Figure 280: Austria (AT)

Final Version | 1 December 2020

Figure 281: Belgium (BE)

Non-exhaustive Requirements (DCC) of CZ

Figure 282: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 283: Germany (DE)

Figure 284: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 285: Denmark 2 (DK-Nordic)

Figure 286: Estonia (EE)

Final Version | 1 December 2020

Figure 287: Finland (FI)

Non-exhaustive Requirements (DCC) of FR

Figure 288: France (FR)

Final Version | 1 December 2020

Figure 289: Great Britain (GB)

Non-exhaustive Requirements (DCC) of GR

Figure 290: Greece (GR)

Final Version | 1 December 2020

Figure 291: Croatia (HR)

Figure 292: Hungary (HU)

Final Version | 1 December 2020

Non-exhaustive Requirements (DCC) of IE

Figure 293: Ireland (IE)

Non-exhaustive Requirements (DCC) of IT

Figure 294: Italy (IT)

Final Version | 1 December 2020

Figure 295: Lithuania (LT)

Non-exhaustive Requirements (DCC) of LU

Figure 296: Luxembourg (LU)

Final Version | 1 December 2020

Figure 297: Latvia (LV)

Figure 298: Netherlands (NL)

Final Version | 1 December 2020

Figure 299: Poland (PL)

Non-exhaustive Requirements (DCC) of PT

Figure 300: Portugal (PT)

Final Version | 1 December 2020

Figure 301: Romania (RO)

Figure 302: Sweden (SE)

Final Version | 1 December 2020

Non-exhaustive Requirements (DCC) of SI

Figure 303: Slovenia (SI)

Non-exhaustive Requirements (DCC) of SK

Figure 304: Slovakia (SK)

Final Version | 1 December 2020

5 NC HVDC Implementation

5.1 Number of implemented non-exhaustive requirements in NC HVDC

Figure 305: Reference total number of to be implemented HVDC non-exhaustive requirements as such

Figure 306: Reference total number of to be implemented values/ranges of regarding HVDC non-exhaustive requirements

Final Version | 1 December 2020

5.2 Frequency Issues (1) of NC HVDC

Non-exhaustive Requirements (HVDC) of HVDC - Frequency Issues (1) -

Figure 307: Reference values of non-exhaustive HVDC frequency issues (1)

Figure 308: Austria (AT)

Final Version | 1 December 2020

Figure 309: Belgium (BE)

Non-exhaustive Requirements (HVDC) of CZ

Figure 310: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 311: Germany (DE)

Non-exhaustive Requirements (HVDC) of DK CE

Figure 312: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 313: Denmark 2 (DK-Nordic)

Non-exhaustive Requirements (HVDC) of EE

Figure 314: Estonia (EE)

Final Version | 1 December 2020

Figure 315: Spain (ES)

Non-exhaustive Requirements (HVDC) of FI - Frequency Issues (1) -

Figure 316: Finland (FI)

Final Version | 1 December 2020

Figure 317: France (FR)

Non-exhaustive Requirements (HVDC) of GB

Figure 318: Great Britain (GB)

Final Version | 1 December 2020

Figure 319: Greece (GR)

Non-exhaustive Requirements (HVDC) of HR - Frequency Issues (1) -

Figure 320: Croatia (HR)

Final Version | 1 December 2020

Figure 321: Hungary (HU)

Figure 322: Ireland (IE)

Final Version | 1 December 2020

Figure 323: Italy (IT)

Non-exhaustive Requirements (HVDC) of LT

Figure 324: Lithuania (LT)

Final Version | 1 December 2020

Figure 325: Latvia (LV)

Non-exhaustive Requirements (HVDC) of NL - Frequency Issues (1) -

Figure 326: Netherlands (NL)

Final Version | 1 December 2020

Figure 327: Poland (PL)

Non-exhaustive Requirements (HVDC) of PT - Frequency Issues (1) -

Figure 328: Portugal (PT)

Final Version | 1 December 2020

Figure 329: Romania (RO)

Non-exhaustive Requirements (HVDC) of SE

Figure 330: Sweden (SE)

Final Version | 1 December 2020

Figure 331: Slovenia (SI)

Non-exhaustive Requirements (HVDC) of SK

Figure 332: Slovakia (SK)

Final Version | 1 December 2020

5.3 Frequency Issues (2) of NC HVDC

Non-exhaustive Requirements (HVDC) of HVDC - Frequency Issues (2) -

Figure 333: Reference values of non-exhaustive DCC - frequency issues (2)

Figure 334: Austria (AT)

Final Version | 1 December 2020

Figure 335: Belgium (BE)

Figure 336: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 337: Germany (DE)

Non-exhaustive Requirements (HVDC) of DK CE

Figure 338: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 339: Denmark 2 (DK-Nordic)

Figure 340: Estonia (EE)

Final Version | 1 December 2020

Figure 341: Spain (ES)

Non-exhaustive Requirements (HVDC) of FI

Figure 342: Finland (FI)

Final Version | 1 December 2020

Figure 343: France (FR)

Non-exhaustive Requirements (HVDC) of GB

Figure 344: Great Britain (GB)

Final Version | 1 December 2020

Figure 345: Greece (GR)

Non-exhaustive Requirements (HVDC) of HR

Figure 346: Croatia (HR)

Final Version | 1 December 2020

Figure 347: Hungary (HU)

Figure 348: Ireland (IE)

Final Version | 1 December 2020

Figure 349: Italy (IT)

Non-exhaustive Requirements (HVDC) of LT

Figure 350: Lithuania (LT)

Final Version | 1 December 2020

Figure 351: Latvia (LV)

Figure 352: Netherlands (NL)

Final Version | 1 December 2020

Figure 353: Poland (PL)

Non-exhaustive Requirements (HVDC) of PT - Frequency Issues (2) -

Figure 354: Portugal (PT)

Final Version | 1 December 2020

Figure 355: Romania (RO)

Figure 356: Sweden (SE)

Final Version | 1 December 2020

Figure 357: Slovenia (SI)

Figure 358: Slovakia (SK)

Final Version | 1 December 2020

5.4 Voltage Issues of NC HVDC

Non-exhaustive Requirements (HVDC) of HVDC - Voltage Issues (1) ---> general application 1,118 pu - 1,05 pu - 1,10 pu - 1,118 pu - 1,10 pu - 1,15 pu - 1,05 pu - 1,097 pu period for operation 1,05 pu - 1.0875 pu ration 1,05 pu - 1,10 pu ion 1,0875 pu - 1,10 pu 0,90 pu - 1,05 pu ion 1,097 pu - 1,15 pu : range s for operation periods for operation ange capacity (MVA) ements at connect 3-phase fault: Ur 3-phase fault: Ur 3-phase fault: Ur 3-phase fault: tr 3-phase fault: tr 3-phase fault: tr fault: size of set fault: fault: fault ration 1,118 pu - 1 eration 0,85 pu - 1 fault: decision on use continental Europe voltage U-Q/Pmax 1,05 pu tion 0,88 pu connection nection range in 1-phase 1-phase f 1-phase f 1-phase f 1-phase f 1-phase f 2-phase ,90 pu on voltage 2-phase f of fast tics of fast the pre-fault minimum short circ pre-fault active power outpu pre-fault reactive power outpu specificatio at timing and accu specify asymmetrical curr time period for ope wider voli longer minimum ti character specification post-fault minimum shor time period for one specify maximum t lefine which of the voltage criteria reactiv ical parameter: provide timescale to mo pre-fault period for period for period for period for control slope period fo for period for period for pecify 1 pu applicable II-O/Pmax wer settings ceptance of narro voltage control i voltage control m voltage contro of any other maxim **TSO decide** time squipment time pedfy a ots as such: Voltage Issues Nor vhaustive

Figure 359: Reference values of non-exhaustive HVDC - voltage issues

Figure 360: Austria (AT)

Final Version | 1 December 2020

Figure 361: Belgium (BE)

Non-exhaustive Requirements (HVDC) of CZ

Figure 362: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 363: Germany (DE)

Non-exhaustive Requirements (HVDC) of DK_CE - Voltage Issues (1) -

Figure 364: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 365: Denmark 2 (DK-Nordic)

Non-exhaustive Requirements (HVDC) of EE

Figure 366: Estonia (EE)

Final Version | 1 December 2020

Figure 367: Spain (ES)

Non-exhaustive Requirements (HVDC) of FI

Figure 368: Finland (FI)

Final Version | 1 December 2020

Figure 369: France (FR)

Non-exhaustive Requirements (HVDC) of GB - Voltage Issues (1) -

Figure 370: Great Britain (GB)

Final Version | 1 December 2020

Figure 371: Greece (GR)

Non-exhaustive Requirements (HVDC) of HR - Voltage Issues (1) -

Figure 372: Croatia (HR)

Final Version | 1 December 2020

Figure 373: Hungary (HU)

Figure 374: Ireland (IE)

Final Version | 1 December 2020

Figure 375: Italy (IT)

Non-exhaustive Requirements (HVDC) of LT

Figure 376: Lithuania (LT)

Final Version | 1 December 2020

Figure 377: Latvia (LV)

Non-exhaustive Requirements (HVDC) of NL

Figure 378: Netherlands (NL)

Final Version | 1 December 2020

Figure 379: Poland (PL)

Non-exhaustive Requirements (HVDC) of PT

Figure 380: Portugal (PT)

Final Version | 1 December 2020

Figure 381: Romania (RO)

Figure 382: Sweden (SE)

Final Version | 1 December 2020

Figure 383: Slovenia (SI)

Non-exhaustive Requirements (HVDC) of SK

Figure 384: Slovakia (SK)

Final Version | 1 December 2020

5.5 System Restoration Issues of NC HVDC

Non-exhaustive Requirements (HVDC) of HVDC - System Restoration Issues ---> general application start, Article start, Article black with black of hlad black than f any voltage change to a steady-sta (<5% pre-synchronisation voltage) than for nput to energise AC busbar with and voltage range limits to energise AC busbar with der frequency and voltage range: 11/18 as required availability at a cor quote acity HVDC 11/18 as required stics of the Juration parties the the tifv timeframe /ider ider the /oltage ith vith Non-exhaustive Requirements as such: System Restoration

Figure 386: Austria (AT)

Final Version | 1 December 2020

Figure 387: Belgium (BE)

Non-exhaustive Requirements (HVDC) of CZ

Figure 388: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 389: Germany (DE)

Non-exhaustive Requirements (HVDC) of DK CE

Figure 390: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 391: Denmark 2 (DK-Nordic)

Non-exhaustive Requirements (HVDC) of EE

Figure 392: Estonia (EE)

Final Version | 1 December 2020

Figure 393: Spain (ES)

Non-exhaustive Requirements (HVDC) of FI

Figure 394: Finland (FI)

Final Version | 1 December 2020

Figure 395: France (FR)

Non-exhaustive Requirements (HVDC) of GB

Figure 396: Great Britain (GB)

Final Version | 1 December 2020

Figure 397: Greece (GR)

Figure 398: Croatia (HR)

Final Version | 1 December 2020

Figure 399: Hungary (HU)

Non-exhaustive Requirements (HVDC) of IE

Figure 400: Ireland (IE)

Final Version | 1 December 2020

Figure 401: Italy (IT)

Non-exhaustive Requirements (HVDC) of LT

Figure 402: Lithuania (LT)

Final Version | 1 December 2020

Figure 403: Latvia (LV)

Non-exhaustive Requirements (HVDC) of NL

Figure 404: Netherlands (NL)

Final Version | 1 December 2020

Figure 405: Poland (PL)

Non-exhaustive Requirements (HVDC) of PT

Figure 406: Portugal (PT)

Final Version | 1 December 2020

Figure 407: Romania (RO)

Non-exhaustive Requirements (HVDC) of SE

Figure 408: Sweden (SE)

Final Version | 1 December 2020

Figure 409: Slovenia (SI)

Non-exhaustive Requirements (HVDC) of SK

Figure 410: Slovakia (SK)

Final Version | 1 December 2020

5.6 Instrumentation, Simulation Models and Protection Issues of NC HVDC

Non-exhaustive Requirements (HVDC) of HVDC - Instrumentation Simulation Models & Protection Issues -

Figure 411: Reference values of non-exhaustive HVDC - instrumentation, simulation ,models and protection issues

Figure 412: Austria (AT)

Final Version | 1 December 2020

Figure 413: Belgium (BE)

Figure 414: Czech Republic (CZ)

Final Version | 1 December 2020

Figure 415: Germany (DE)

Figure 416: Denmark 1 (DK-CE)

Final Version | 1 December 2020

Figure 417: Denmark 2 (DK-Nordic)

Figure 418: Estonia (EE)

Final Version | 1 December 2020

Figure 419: Spain (ES)

Non-exhaustive Requirements (HVDC) of FI

Figure 420: Finland (FI)

Final Version | 1 December 2020

Figure 421: France (FR)

Non-exhaustive Requirements (HVDC) of GB

Figure 422: Great Britain (GB)

Final Version | 1 December 2020

Figure 423: Greece (GR)

Figure 424: Croatia (HR)

Final Version | 1 December 2020

Figure 425: Hungary (HU)

Figure 426: Ireland (IE)

Final Version | 1 December 2020

Figure 427: Italy (IT)

Figure 428: Lithuania (LT)

Final Version | 1 December 2020

Figure 429: Latvia (LV)

Non-exhaustive Requirements (HVDC) of NL

Figure 430: Netherlands (NL)

Final Version | 1 December 2020

Figure 431: Poland (PL)

Non-exhaustive Requirements (HVDC) of PT

Figure 432: Portugal (PT)

Final Version | 1 December 2020

Figure 433: Romania (RO)

Figure 434: Sweden (SE)

Final Version | 1 December 2020

Figure 435: Slovenia (SI)

Non-exhaustive Requirements (HVDC) of SK

Figure 436: Slovakia (SK)

Final Version | 1 December 2020

6 Annex

The following sections graphically present implemented Fault-Ride-Through capabilities in the NCNCs. For the reason of readability and easy interpretation the FRT implementation curves of two countries at a time are grouped in one diagram in alphabetic order. This means no direct comparison of the pairwise presented countries' graphs but only enhances readability. Any numerical values of FRT curves can be found in the consolidated Implementation Monitoring Excel File on the ENTSO-E website (for <u>RfG FRT data</u> and <u>HVDC FRT data</u>).

6.1 Findings on Fault-Ride-Through Capability according to NC RfG article 14(3)(a)(i)

U/p.u. 10 U_{dear_max} = U_{rec1_max} Upper envelope = U rec2_max -0.9 rec2 7// U rec2_min 0.8 clear rec1 Lower envelope Udear_min =Urec1_min 0.7 0.6 0.5 0.4 U_{ret_max} ----0.3 0.2 ret 0.1 -Uret_m 0.25 0.70 1.50 t/s 0 0.14 t_{clear_max} = t_{rec2_max} t_{rec2_max} t_{rec3_max} t_{dear} mir trec1_min = t_{rec2_min} = t_{rec3_min}

6.1.1 FRT criteria for SPGMs of type B/C

Figure 437: Fault-ride-through profile a SPGM type B/C, FRT curve should be inside defined area limited by the red upper and lower boundary conditions in the figure.

Voltage parameters (p.u.)		Time parameters (s)		
Uret	0,05 – 0,30	t _{clear}	0,14 - 0,15 (0,14 - 0,25)	
U_{clear}	0,70 - 0,90	t _{rec1}	t _{clear}	
Urec1	Uclear	t _{rec2}	t _{rec1} - 0,70	
U _{rec2}	$0,85 - 0,90 \text{ and } \ge U_{clear}$	t _{rec3}	t _{rec2} – 1,50	

Table 2: Parameters for fault-ride-through capability of SPGMs type B/C

Final Version | 1 December 2020

6.1.2 FRT criteria for PPMs of type B/C

Figure 438: Fault-ride-through profile a PPM type B/C, FRT curve should be inside defined area limited by the red upper and lower boundary conditions in the figure.

Volta	Voltage parameters (p.u.)		Time parameters (s)	
U _{ret}	0,05 - 0,15	t _{clear}	0,14 - 0,15 (0,14 - 0,25)	
U_{clear}	U _{ret} - 0,15	t _{rec1}	tclear	
U _{rec1}	Uclear	t _{rec2}	t _{rec1}	
U _{rec2}	0,85	t _{rec3}	1,50 - 3,00	

Table 3: Parameters for fault-ride-through capability of PPMs type B/C

Final Version | 1 December 2020

6.2 Findings on Fault-Ride-Through Capability according to NC RfG article 16(3)(a)(i)

Figure 439: Fault-ride-through profile a SPGM type D, FRT curve should be inside defined area limited by the red upper and lower boundary conditions in the figure.

Volt	Voltage parameters (p.u.)		Time parameters (s)	
U _{ret}	0,00	t _{clear}	0,14 - 0,15 (0,14 - 0,25)	
U _{clear}	0,25	t _{rec1}	t _{clear} – 0,45	
U _{rec1}	0,50 - 0,70	t _{rec2}	t _{rec1} - 0,70	
U _{rec2}	0,85 – 0,90	t _{rec3}	t _{rec2} – 1,50	

Table 4: Parameters for fault-ride-through capability of SPGMs type D

Final Version | 1 December 2020

6.2.2 FRT criteria for PPMs of type D

Figure 440: Fault-ride-through profile a PPM type D, FRT curve should be inside defined area limited by the red upper and lower boundary conditions in the figure.

Voltage Parameters (pu)		1	Time parameters (s)	
U _{ret}	0,00	t _{clear}	0,14 - 0,15 (0,14 - 0,25)	
U_{clear}	U _{ret}	t _{rec1}	t _{clear}	
U _{rec1}	U _{clear}	t _{rec2}	t _{rec1}	
U _{rec2}	0,85	t _{rec3}	1,50 - 3,00	

Table 5: Parameters for fault-ride-through capability of PPMs type D

Final Version | 1 December 2020

6.3 Conclusions on implementation status of RfG FRT capabilities of type B/C/D

Country	Data provision	Implementation pursuant to article 14.3.a.(i) – SPGMs	Implementation pursuant to article 14.3.a.(i) – PPMs	Implementation pursuant to article 16.3.a.(i) – SPGMs	Implementation pursuant to article 16.3.a.(i) – PPMs	Remarks
AT	Yes	Yes	Yes	Yes	Yes	-
BE	Yes	Yes	Yes	Yes	Yes	-
BG	No	No	No	No	No	Lack of numerical data
CZ	Yes	Yes	Yes	Yes	Yes	-
DE	Yes	Yes	Yes	Yes	Yes	-
DK-CE	Yes	Yes	No	No	Yes	Out of NC RfG ranges
DK-Nordic	Yes	Yes	No	No	No	Out of NC RfG ranges
EE	Yes	Yes	Yes	Yes	Yes	-
ES	Yes	Yes	Yes	Yes	Yes	-
FI	Yes	Yes	Yes	Yes	Yes	-
FR	Yes	Yes	Yes	Yes	Yes	-
GB	Yes	Yes	Yes	Yes	Yes	-
GR	Yes	Yes	Yes	Yes	Yes	-
HR	Yes	Yes	Yes	Yes	Yes	-
HU	Yes	Yes	Yes	Yes	Yes	-
IE	Yes	Yes	Yes	Yes	Yes	-
IT	Yes	Yes	Yes	Yes	Yes	-
LT	Yes	Yes	Yes	Yes	Yes	-
LU	Yes	Yes	Yes	Yes	Yes	-
LV	Yes	Yes	Yes	Yes	Yes	-
NL	Yes	Yes	Yes	Yes	Yes	-
PL	Yes	Yes	Yes	Yes	Yes	-
PT	Yes	Yes	Yes	Yes	Yes	-
RO	Yes	Yes	Yes	Yes	Yes	-
SE	Yes	Yes	Yes	Yes	Yes	-
SI	Yes	Yes	Yes	Yes	Yes	-
SK	Yes	Yes	Yes	Yes	Yes	-

Table 6: Implementation status of FRT capabilities pursuant to RfG article 14.3.a.(i) / 16.3.a.(i)

Final Version | 1 December 2020

6.4 Findings on Fault-Ride-Through Capability according to NC HVDC article 25(1)(a)(i)

6.4.1 FRT criteria for HVDC converter stations

Figure 441: Fault-ride-through profile a HVDC converter station, FRT curve should be inside defined area limited by the red upper and lower boundary conditions in the figure.

Voltage parameters (p.u.)		Time parameters (s)	
U _{ret}	0,00 - 0,30	t _{clear}	0,14 - 0,15
U _{rec1}	0,25 - 0,85	t _{rec1}	1,50 - 2,50
U _{rec2}	0,85 – 0,90	t _{rec2}	t _{rec1} - 10,00

Table 7: Parameters for fault-ride-through capability of HVDC converter stations

Final Version | 1 December 2020

Final Version | 1 December 2020

6.5 Conclusions on implementation status of HVDC converter stations' FRT capabilities

Country	Data provision	Implementation pursuant to article 25.1	Remarks
AT	Yes	-	No installations
BE	Yes	_	Minimum is specified
BG	No	-	Lack of numerical data
CZ	Yes	-	Site specific
DE	Yes	Yes	
DK-CE	Yes	No	Out of NC HVDC ranges
DK-Nordic	Yes	No	Out of NC HVDC ranges
EE	Yes	Yes	-
ES	Yes	Yes	-
FI	Yes	Yes	-
FR	Yes	No	No Ure1, trec1
GB	Yes	Yes	-
GR	Yes	Yes	
HR	Yes	Yes	-
HU	Yes	Yes	
IE&NI	Yes	Yes (only NI)	-
IT	Yes	Yes	
LT	Yes	Yes	-
LU	No		No installations
LV	Yes	Yes	-
NL	Yes	Yes	-
PL	Yes	Yes	-
PT	Yes	Yes	-
RO	Yes	Yes	-
SE	Yes	Yes	-
SI	Yes	Yes	-
SK	Yes	Yes	—s

Table 8: Implementation status of HVDC converter stations' FRT capabilities pursuant to HVDC article 25.1

Final Version | 1 December 2020

6.6 References of examined non-exhaustive requirements linked to CNC articles

6.6.1 NC RfG non-exhaustive requirements – Frequency Issues

Issue	RfG Article No.	Non-exhaustive Requirement
Frequency Ranges	13(1)(a)(i)	Time period for: • 47.5Hz-48.5Hz (SAs: CE, Baltic) • 48.5Hz-49.0Hz (SAs: CE, Nordic, GB, IR, Baltic) • 51.0Hz-51.5Hz (SAs: Baltic)
Frequency Ranges	13(1)(a)(ii)	 Potential wider frequency ranges Potential longer minimum times Specific requirements for frequency and voltage deviations
RoCoF	13(1)(b)	Max. RoCoF and measuring window for which PGM shall stay connected
RoCoF	13(1)(b)	Specify RoCoF of the loss of main protection
LFSM-O	13(2)(a)	Frequency thresholdDroop settings
LFSM-O	13(2)(b)	Use of automatic disconnection and reconnection
LFSM-O	13(2)(f)	Expected behaviour of the PGM once the regulating minimum level is reached
Admissible Active Power Reduction	13(4)	Admissible active power reduction from max. output with falling frequency
Admissible Active Power Reduction from maximum Output with falling Frequency	13(5)	Definition of the ambient conditions applicable when defining the admissible active power reduction and take into account of the capabilities of PGM
Logic Interface (1)	13(6)	Requirements for the additional equipment necessary to allow active power output to be remotely operable
Automatic Connection to the Network	13(7)	 Conditions for automatic connection to the network regarding Frequency ranges Corresponding delay time Maximum admissible gradient of increase in active power output
Logic Interface (2)	14(2)(b)	Requirements for the equipment necessary to make the logic interface remotely operable (to cease active power output)
Frequency Stability	15(2)(a)	 Time period to reach the adjusted active power set point Tolerance applying to the new set point Time period to reach tolerance applying to the new set point
LFSM-U	15(2)	 Frequency threshold Droop Definition of P_{ref}
Frequency Sensitive Mode	15(2)(d)(i)	 Active power range related to maximum capacity Frequency response insensitivity Frequency response dead band Droop
Frequency Sensitive Mode (FSM)	15(2)(d)(iii)	Maximum admissible full activation time

Final Version | 1 December 2020

Issue	RfG Article No.	Non-exhaustive Requirement
Frequency Sensitive Mode (FSM)	15(2)(d)(iv)	Maximum admissible initial delay for PGMs without inertia
Frequency Sensitive Mode (FSM)	15(2)(d)(v)	Time period for the provision of full active power frequency response
Frequency Restoration Control	15(2)(e)	Specifications of the frequency restoration control
Real-Time Monitoring of FSM	15(2)(g)	 List of the necessary data which will be sent in real time Definition of additional signals
	15(6)	Taking into consideration the specific characteristics of the prime mover technology:
Rates of Change of		 Minimum limit of change of active power output in down direction
Active Power Output		 Maximum limit of change of active power output in down direction
		 Minimum limit of change of active power output in up direction
		 Maximum limit of change of active power output in up direction

Table 9: NC RfG non-exhaustive requirements – Frequency Issues

6.6.2 NC RfG non-exhaustive requirements – Voltage Issues

Issue	RfG Article No.	Non-exhaustive Requirement
Fault Ride Through Capability	14(3)(a)(i) (Voltage-against-time profile)	SPGM: • U _{ret} , U _{clear} , U _{rec1} , U _{rec2} • t _{ret} , t _{clear} , t _{rec1} , t _{rec2} , t _{rec3}
Fault Ride Through Capability	14(3)(a)(i) (Voltage-against-time profile)	PPM: • U _{ret} , U _{clear} , U _{rec1} , U _{rec2} • t _{ret} , t _{clear} , t _{rec1} , t _{rec2} , t _{rec3}
Fault Ride Through Capability	14(3)(a)(iv)	 Pre-fault minimum short circuit capacity (MVA) at connection point Pre-fault active power output at connection point Pre-fault reactive power output at connection point Pre-fault voltage at connection point Post-fault minimum short circuit capacity (MVA) at connection point (only type D)
Fault Ride Through Capability	14(3)(b) (Voltage-against-time profile for asymmetric faults)	SPGM: • U _{ret} , U _{clear} , U _{rec1} , U _{rec2} • t _{ret} , t _{clear} , t _{rec1} , t _{rec2} , t _{rec3}
Fault Ride Through Capability	14(3)(b) (Voltage-against-time profile for asymmetric faults)	PPM: • U _{ret} , U _{clear} , U _{rec1} , U _{rec2} • t _{ret} , t _{clear} , t _{rec1} , t _{rec2} , t _{rec3}
Fault Ride Through Capability	16(3)(a)(i) (Voltage-against-time profile)	SPGM: • U _{ret} , U _{clear} , U _{rec1} , U _{rec2} • t _{ret} , t _{clear} , t _{rec1} , t _{rec2} , t _{rec3}

Final Version | 1 December 2020

Issue	RfG Article No.	Non-exhaustive Requirement
Fault Ride Through Capability	16(3)(a)(i) (Voltage-against-time profile)	PPM: • U _{ret} , U _{clear} , U _{rec1} , U _{rec2} • t _{ret} , t _{clear} , t _{rec1} , t _{rec2} , t _{rec3}
Fault Ride Through Capability	16(3)(c) (Voltage-against-time profile for asymmetric faults)	SPGM: • Uret, Uclear, Urec1, Urec2 • tret, tclear, trec1, trec2, trec3
Fault Ride Through Capability	16(3)(c) (Voltage-against-time profile for asymmetric faults)	PPM: • Uret, Uclear, Urec1, Urec2 tret, tclear, trec2, trec3
Fault Ride Through Capability	16(3)(b)(i)	 Pre-fault minimum short circuit capacity (MVA) at connection point
Fault Ride Through Capability	16(3)(b)(ii)	 Pre-fault active power output at connection point Pre-fault reactive power output at connection point Pre-fault voltage at connection point
Fault Ride Through Capability	16(3)(b)(iii)	 Post-fault minimum short circuit capacity (MVA) at connection point
Automatic Disconnection due to Voltage Level	15(3)	 Voltage criteria for automatic disconnection Settings for automatic disconnection
Voltage Ranges PGM U<300kV	16(2)(a)(i)	Time period for operation: • 1.118pu-1.15pu (SAs: CE)
Voltage Ranges PGM U<300kV	16(2)(a)(ii)	 Shorter time period in the event of simultaneous overvoltage and under frequency Shorter time period in the event of simultaneous undervoltage and over frequency
Voltage Ranges PGM U<300kV	16(2)(b)	 Wider voltage ranges for operation may be agreed by RSO, PGFO and TSO Longer minimum time periods for operation may be agreed by RSO, PGFO and TSO
Voltage Ranges PGM 300kV < U <400kV	16()(a)(i)	Time period for operation 1.05pu-1.10pu (SAs: CE: Nordic)
Voltage Ranges PGM 300kV < U <400kV	16(2)(a)(iii)	Time period for operation 1.05pu-1.0875pu in Spain may be specified as unlimited
Voltage Ranges PGM 300kV < U <400kV	16(2)(a)(v)	For Baltic voltage ranges and time period for operation may be in line with Continental Europe for facilities connected to the 400kV network.
Voltage Ranges PGM 300kV < U <400kV	16(2)(a)(ii)	 Shorter time period in the event of simultaneous overvoltage and under frequency Shorter time period in the event of simultaneous undervoltage and over frequency
Voltage Ranges PGM 300kV < U <400kV	16(2)(b)	 Wider voltage ranges for operation may be agreed by RSO, PGFO and TSO Longer minimum time periods for operation may be agreed by RSO, PGFO and TSO
Reactive Power Capability SPGM	17(2)(a)	Capability to supply or absorb reactive power

Final Version | 1 December 2020

Issue	RfG Article No.	Non-exhaustive Requirement
Supplementary Reactive Power SPGM	18(2)(a)	Definition of supplementary reactive power to compensate reactive power demand of the HV line or cable when connection point is not located at the HV side of the step-up transformer
Reactive Power Capability SPGM at max. Capacity	18(2)(b)(i)	U-Q/P _{max} -profile at maximum capacity
Reactive Power Capability SPGM at max. Capacity	18(2)(b)(iv)	Appropriate timescale to reach any operating point within U- $\ensuremath{Q}\xspace/\ensuremath{P}\xspace_{max}$ profile
Voltage Control SPGM	19(2)(a)	 Parameters and settings of the components of the voltage control system Specifications of the automatic voltage regulator (AVR)
Voltage Stability SPGM	19(2)(b)(v)	Power threshold above which PSS function must be specified
Reactive Power Capability PPM	20(2)(a)	Capability to supply or absorb reactive power
Fast Fault Current PPM	20(2)(b)(ii)	 How the voltage deviation is determined? When the voltage deviation is determined? Characteristics of fast fault current injection Timing of fast fault current injection which may include several stages Accuracy of fast fault current injection which may include several stages The end of the voltage deviation
Fast Fault Current PPM	20(2)(c)	 Specification for asymmetrical current injection (in case of asymmetrical faults 1-phase/2-phase faults)
Supplementary Reactive Power PPM	21(3)(a)	 Definition of supplementary reactive power to compensate reactive power demand of the HV line or cable when connection point is not located at the HV side of the step-up transformer
Reactive Power PPM at max. Capacity	21(3)(b)	 U-Q/P_{max}-profile at maximum capacity
Reactive Power PPM below max. Capacity	21(3)(c)(i)	 U-Q/P_{max}-profile below maximum capacity
Reactive Power PPM below max. Capacity	21(3)(c)(iv)	 Appropriate timescale to reach any operating point within U- Q/P_{max}-profile
Reactive Power Control Modes PPM	21(3)(d)(iv) (Voltage control mode)	 t₁: time within which 90% of the change in reactive power is reached t₂: time within which 100% of the change in reactive power is reached
Reactive Power Control Modes PPM	21(3)(d)(vi) (Power factor control mode)	 Target power factor Time period to reach the set point Tolerance
Reactive Power Modes PPM	21(3)(d)(vii) (Specifications of the two reactive power control mode options)	 Which reactive power control mode is chosen? Which associated set points are applied? Which further equipment is needed to make the relevant set point operable?

Table 10: NC RfG non-exhaustive requirements – Voltage Issues

Final Version | 1 December 2020

6.6.3 NC RfG non-exhaustive requirements – System Restoration Issues

Issue	RfG Article No.	Non-exhaustive Requirement
Reconnection Capability	14(4)(a)	Conditions for reconnection to the network after an incidental disconnection caused by network disturbance
Reconnection Capability	14(4)(b)	Conditions for automatic reconnection
Blackstart Capability	15(5)(a)(ii)	Technical specifications for a quotation for black start capability
Blackstart Capability	15(5)(a)(iii)	Timeframe within which the PGM is capable of starting from shutdown without any external electrical energy supply
Blackstart Capability	15(5)(a)(iv)	Voltage limits for synchronisation when article 16.2 does not apply
Capability of Island Operation	15(5)(b)(iii)	Methods and criteria for detecting island operation
Operation following Tripping to Houseload	15(5)(c)(iii)	Minimum operation time within which the PGM is capable of operating after tripping
Active Power Recovery SPGM	17(3)	Definition of the magnitude and time for active power recovery
Post Fault Active Power Recovery PPM	20(3)(a)	 Specification when the post-fault active power recovery begins Specification of the max. allowed time for active power recovery Specification of magnitude and accuracy for active power recovery

Table 11: NC RfG non-exhaustive requirements – System Restoration Issues

6.6.4 NC RfG non-exhaustive requirements – Instrumentation, Simulation Models and Protections Issues

lssue	RfG Article No.	Non-exhaustive Requirement
Control Scheme and Settings	14(5)(a)	Control schemes of the control devicesControl settings of the control devices
Electrical Protection Schemes and Settings	14(5)(b)	Electrical protection schemesElectrical protection settings
Information Exchanges	14(5)(d)	 Content of information exchange Precise list of data to be facilitated Precise time of data to be facilitated
Manual, local Measures where the Automatic Remote Devices are out of Order	15(2)(b)	 Time period to reach the requested set point in cases where the automatic remote control devices are out of service Tolerance to reach the requested set point in cases where the automatic remote control devices are out of service
Loss of Angular Stability or Loss of Control	15(6)(a)	Criteria to detect loss of angular stability or loss of control
Instrumentation	15(6)(b)(i)	Definition of the quality of supply parameters
Instrumentation	15(6)(b)(ii)	 Settings of the fault recording equipment Triggering criteria of the fault recording equipment Sampling rates of the fault recording equipment

Final Version | 1 December 2020

Issue	RfG Article No.	Non-exhaustive Requirement
Instrumentation	15(6)(b)(iii)	Specifications of the oscillation trigger detecting poorly damped power oscillations
Instrumentation	15(6)(b)(iv)	Protocols for recorded data
Simulation Models	15(6)(c)(iii)	Specifications of the simulation models
Installation of Devices for System Operations and Security	15(6)(d)	Definitions of the devices needed for system operation and system security
Neutral Point at the Network Side of Step-Up Transformers	15(6)(f)	Specifications of the earthing arrangement of the neutral point at the network side of the step-up transfomers
Automatic Disconnection	16(2)(c)	Definition of the threshold for automatic disconnectionDefinition of the parameters
Synchronisation	16(4)	Settings of the synchronisation devices
Angular Stability	19(3)	Agreement for technical capabilities of the PGM to aid angular stability
Synthetic Inertia	21(2)	 Definition of the operating principle of control systems to provide synthetic inertia Related performance parameters to provide synthetic inertia

Table 12: NC RfG non-exhaustive requirements – Instrumentation, Simulation Models and Protection Issues

6.6.5 NC DCC non-exhaustive requirements – Frequency Issues

Issue	DCC Article No.	Non-exhaustive Requirement
Frequency Ranges	12(1) and Annex I	 Time period for: 47.5Hz-48.5Hz (SAs: CE, Baltic) 48.5Hz-49.0Hz (SAs: CE, Nordic, GB, IR, Baltic) 51.0Hz-51.5Hz (SAs: Baltic)
Frequency Ranges	12(2) and Annex I	 Potential wider frequency ranges Potential longer minimum times Specific requirements for frequency and voltage deviations
Frequency Ranges	29.(2)(a)	Extended frequency range
DRS	29.(2)(c)	for DU connected below 110 kV: definition of the normal operating range
DRS	29(2)(d)	definition of the allowed frequency dead band
DRS	29(2)(e)	 Definition of the frequency ranges for DRS System Frequency Control (SFC) Definition of the maximum frequency deviation to respond
DRS	29(2)(g)	 Definition of the rapid detection of frequency system changes Definition of the response to frequency system changes

Table 13: NC DCC non-exhaustive requirements – Frequency Issues

Final Version | 1 December 2020

6.6.6 NC DCC non-exhaustive requirements – Voltage Issues

Issue	DCC Article No.	Non-exhaustive Requirement
		Time period for:
Voltage Ranges	13(1) and Annex II	 1,05 pu – 1,10 pu (SAs: Nordic)
		 1,118 pu – 1,15 pu (SAs: CE, Baltic)
		Time period for:
Voltage Ranges	13(1) and Annex II	■ 1,05 pu – 1,10 pu (SAs: CE, Nordic, GB)
		■ 1,097 pu – 1,15 pu (SAs: Baltic)
Automatic disconnection	13(6)	 Voltage criteria parameters at the connection point for automatic disconnection
due to voltage level	13(6)	 Technical parameters at the connection point for automatic disconnection
Reactive power capability for TC DF and TC DS	15(1)(a)	Definition of the actual reactive power range for DF without onsite generation
Reactive power capability for TC DF and TC DS	15(1)(b)	Definition of the actual reactive power range for DF with onsite generation
Reactive power capability for TC DF and TC DS	15(1)(c)	Definition of the scope of the analysis to find the optimal solution for reactive power
Reactive power capability for TC DF and TC DS	15(1)(d)	Definition of other metrics than power factor
Reactive power capability for TC DF and TC DS	15(1)(e)(e)	Use of other metrics
Reactive power capability for TC DF and TC DS	15(3)	Method to carry out active control the exchange of reactive power at the connection point
DRS	28(2)(a)	Extended frequency range
DRS	28(2)(c)	For DF or CDS connected below 110 kV: definition of the normal operating range
DRS	28(2)(e)	Technical specifications to enable the transfer of information for DR LFDD and Low Voltage Demand Disconnection (LVDD), for DR Active Power Control (APC) and DR Reactive Power Control
DRS	28(2)(f)	Definition of the time period to adjust the power consumption
DRS	28(2)(i)	Definition of the modalities of notification in case of a modification of the DR capability
DRS	28(2)(k)	Definition of the ROCOF maximum value
Power quality	20	Allocated level of voltage distortion

Table 14: NC DCC non-exhaustive requirements – Voltage Issues

Final Version | 1 December 2020

6.6.7 NC DCC non-exhaustive requirements – System Restoration Issues

Issue	DCC Article No.	Non-exhaustive Requirement
Short circuit requirements	14(1)	Maximum short-circuit current at the connection point to be withstood
Short circuit requirements	14(3)	Unplanned events: threshold of the maximum short circuit current inducing an information from the TSO in case of a change above this threshold
Short circuit requirement	14(5)	Planned events: threshold of the maximum short circuit current inducing an information from the TSO in case of a change above this threshold
Short circuit requirement	14(8)	Unplanned events: threshold of the maximum short circuit current inducing an information from the; TC DF or TC DSO in case of a change above this threshold
Short circuit requirements	14(9)	Planned events: threshold of the maximum short circuit current inducing an information from the TC DF or TC DSO in case of a change above this threshold
Demand disconnection for system defence	19(1)(a)	Definition the capabilities of Low Frequency Demand Disconnection (LFDD) scheme
Demand disconnection for system defence	19(2)(a)	Definition of the LVDD scheme
Demand disconnection for system defence	19(2)(b)	Definition of the LVDD scheme
Demand disconnection for system defence	19(3)(b)	Definition of the automatic on load tap changer blocking scheme
Demand disconnection for system defence	19(4)(a)	Definition of the conditions for reconnection after a disconnection
Demand disconnection for system defence	19(4)(b)	Settings of the synchronisation devices (including frequency, voltage, phase angle range and deviation of voltage and frequency)
Demand disconnection for system defence	19(4)(c)	Definition of the automated disconnection equipment time for remote disconnection

Table 15: NC DCC non-exhaustive requirements – System Restoration Issues

6.6.8 NC DCC non-exhaustive requirements – Instrumentation, Simulation Models and Protections Issues

Issue	DCC Article No.	Non-exhaustive Requirement
Electrical Protection Scheme and settings	16(1)	Electrical protection schemesElectrical protection settings
Control Requirements	17(1)	Control devices schemesControl devices settings
Information Exchanges	18(1)	Standards to exchange information and time stamping
Information Exchanges	18(2)	Standards to exchange information and time stamping
Information Exchanges	18(3)	Make information exchange standards publically available
Simulation Models	21(3)	Content and format of the simulation models or equivalent information
Simulation Models	21(5)	Requirements for the recordings to be compared with the response of the model

Table 16: NC DCC non-exhaustive requirements – Instrumentation, Simulation Models and Protection Issues

Final Version | 1 December 2020

6.6.9 NC HVDC non-exhaustive requirements – Frequency Issues

Issue	HVDC Article No.	Non-exhaustive Requirement
Frequency Ranges	11(1)	 Time period for: 47,5 Hz-48,5 Hz (SAs: CE, Baltic) 48,5 Hz-49,0 Hz (SAs: CE, Nordic, GB, IR, Baltic) 51,0 Hz-51,5 Hz (SAs: Baltic) 51,5 Hz-52,0 Hz (SAs: CE, Nordic, GB, IR, Baltic)
Wider Frequency Ranges	11(2)	Potential wider frequency rangesPotential longer minimum times
Automatic Disconnection	11(3)	 Frequencies to disconnect
Maximum Admissible Power Output	11(4)	 Maximum admissible power output reduction below 49 Hz
Active Power Controllability	13(1)(a)(i)	Maximum power stepMinimum power step
Active Power Controllability	13(1)(a)(ii)	Minimum active power transmission capacity
Active Power Controllability	13(1)(a)(iii)	 Maximum delay
Active Power Controllability	13(1)(b)	 Modification of transmitted active power
Fast Active Power Reversal	13(1)(c)	 Capability or not fast active power reversal
Automatic Remedial Action	13(3)	Triggering criterionBlocking criterion
Synthetic Inertia	14(1)	Functionality
Synthetic Inertia	14(2)	 Principle of control Performance parameters
Frequency Sensitive Mode	Annex II A(1)(a)	 Frequency response dead band Droop s1 (upward regulation) Droop s2 (downward regulation) Frequency response insensitivity
Frequency Sensitive Mode	Annex II A(1)(d)(ii)	Initial delay t1Time for full activation t2
LFSM-O	Annex II B(1)(c)	 Initial delay Time for full activation
LFSM-O	Annex II B(2)	Frequency thresholdDroop s3
LFSM-U	Annex II C(1)(c)	 Initial delay
LFSM-U	Annex II C(2)	 Time for full activation Frequency threshold Droop s4
Frequency Control Mode	16(1)	 Need for independent control mode to modulate active power output
Frequency Control Mode	16(2)	Specify operating principle

Final Version | 1 December 2020

Issue	HVDC Article No.	Non-exhaustive Requirement
Max. Loss of Active Power	17(1)	 Specify limit for loss of active power injection
Max. Loss of Active Power	17(2)	 Coordinate specified limit of active power injection
Frequency Stability Requirements	39(1)(b)	 Specify coordinated frequency control capabilities
Frequency Ranges	39(2)(a)	 The applicable frequency ranges and time periods at nominal frequencies other than 50 Hz
Wider Frequency Ranges	39(2)(b)	 Agreement on wider frequency ranges for operation Agreement on wider longer minimum times for operation
Automatic Disconnection	39(2)(c)	 Frequencies for automatic disconnection
LFSM-O	39(4)	Frequency threshold Droop settings
LFSM-O	39(4)	Definition of P _{ref}
LFSM-O	39(4)	 Expected behaviour of the PGM once the minimum regulating level is reached
Constant Power	39(5)	 Specify capability of maintaining constant output at PPM target active power value regardless of changes in frequency
Active Power	39(6)	 Specify tolerance (subject to the availability of the prime mover resource) applying to the new set point
Controllability		 Specify the time within which the new set point must be reached
LFSM-U	39(7)	 Frequency threshold Droop
LFSM-U	39(7)	Definition of P _{ref}
FSM with Subject to a Fast Signal Response	39(8)	 Active power range related to maximum capacity Frequency response insensitivity Frequency response dead band Droop Maximum admissible full activation time Maximum admissible initial delay for PGMs without inertia Time period for the provision of full active power frequency response
Frequency Restoration	39(9)	 Specifications of the frequency restoration control
For Frequencies other than 50 Hz	39(10)	 Frequency threshold, droop (Frequency other than 50 Hz) Frequency response dead band (Frequency other than 50 Hz) Definition of P_{ref} (Frequency other than 50 Hz)
Wider frequency ranges (nominal frequencies other than 50 Hz	47(1)	 Potential wider frequency ranges (nominal frequencies other than 50 Hz) Potential longer minimum times (nominal frequencies other than 50 Hz)
Automatic Disconnection (for frequencies other than 50 Hz)	47(1)	 Frequencies to disconnect (nominal frequencies other than 50 Hz)
Maximum Admissible Power Output (for frequencies other than 50 Hz)	47(2)	 Maximum admissible power output below 49 Hz (nominal frequencies other than 50 Hz

Table 17: NC HVDC non-exhaustive requirements – Frequency Issues

Final Version | 1 December 2020

6.6.10 NC HVDC non-exhaustive requirements – Voltage Issues

Issue	HVDC Article No.	Non-exhaustive Requirement
Voltage Ranges	Annex III	Time period for:
Voltage Ranges 300 kV < U ≤ 400 kV	Annex III Table 5	 1,118 pu - 1,15 pu (SAs: CE) Time period for: 1,05 pu - 1,0875 pu (SAs: CE) 1,05 pu - 1,10 pu (SAs: Nordic)
Agreement on Wider Voltage Ranges or Longer Min. Times	18(2)	 Wider voltage ranges for operation Longer minimum time periods for operation
Automatic Disconnection	18(3)	 Voltage criteria at the connection point for automatic disconnection Technical parameters at the connection point for automatic disconnection
Voltage Ranges	18(4)	 Specify 1 pu applicable requirements at connection points
Voltage Ranges	18(5)	 Decision on use continental Europe voltage ranges
Short Circuit Contribution during Faults	19(2)(a)	 Specifications on voltage deviation
Short Circuit Contribution during Faults	19(2)(b)	 Characteristics of fast fault current
Short Circuit Contribution during Faults	19(2)(c)	 Timing and accuracy of fast fault current
Short Circuit Contribution during Faults	19(3)	 Specify asymmetrical current injection for 1-phase faults Specify asymmetrical current injection for 2-phase faults
Reactive Power Capability	20(1)	 U-Q/P_{max} profile at maximum capacity
Reactive Power Capability	20(3)	 Provide timescale to move within U-Q/P_{max} profile
Reactive Power Exchanged with the Network	21(2)	 Specify maximum tolerable voltage step value
Reactive Power Control Mode	22(1)	 Define which of the control modes are required
Reactive Power Control Mode	22(2)	 Define of any other control modes are required and if so what are they
Reactive Power Control Mode	22(3)(b)	 For voltage control mode definition of adjustment steps required for dead band
Reactive Power Control Mode	22(3)(c)	 In voltage control mode time within which 90% of the change in reactive power is reached within 0,1 seconds -10,0 seconds In voltage control mode t₂ = time within which 100% of the change in reactive power is reached within 1 seconds - 60 seconds
Reactive Power Control Mode	22(3)(d)	 Voltage control slope specified by range and step
Reactive Power Control Mode	22(4)	Reactive power range in Mvar or %
Reactive Power Control Mode	22(5)	 Maximum allowable step size of set point

Final Version | 1 December 2020

Issue	HVDC Article No.	Non-exhaustive Requirement
Reactive Power Control Mode	22(6)	 Equipment specification to enable remote control of control modes and set points
Priority to Active or Reactive Power Contribution	23	 TSO decide active or reactive power has priority during low and high voltage operation and during faults
Fault Ride Through	25(1)	Specify: • 3-phase fault: U _{ret} • 3-phase fault: U _{rec1} • 3-phase fault: U _{rec2} • 3-phase fault: t _{clear} • 3-phase fault: t _{rec1} • 3-phase fault: t _{rec2}
Fault Ride Through	25(2)(a)	 Pre-fault minimum short circuit capacity (MVA) at connection point
Fault Ride Through	25(2)(b)	 Pre-fault voltage at connection point
Fault Ride Through	25(2)(c)	 Post-fault minimum short circuit capacity (MVA) at connection point
Fault Ride Through	25(4)	 Voltages where HVDC system can block, U_{block}
Fault Ride Through	25(5)	 Acceptance of narrower settings on under voltage protection Narrower settings on under voltage protection
Fault Ride Through	25(6)	Specify: • 1-phase fault: U _{ret} • 1-phase fault: U _{rec1} • 1-phase fault: U _{rec2} • 1-phase fault: t _{clear} • 1-phase fault: t _{rec1} • 1-phase fault: t _{rec2} • 2-phase fault: U _{ret} • 2-phase fault: U _{rec2} • 2-phase fault: U _{rec2} • 2-phase fault: t _{clear} • 2-phase fault: t _{clear} • 2-phase fault: t _{clear}

Table 18: NC HVDC non-exhaustive requirements – Voltage Issues

6.6.11 NC HVDC non-exhaustive requirements – System Restoration Issues

Issue	HVDC Article No.	Non-exhaustive Requirement
Energisation and Synchronisation of HVDC Converter Stations	28	 Limits of any voltage change to a steady-state level (<5% pre- synchronisation voltage) Maximum magnitude of the voltage transients Duration of the voltage transients Measurement window of the voltage transients

Final Version | 1 December 2020

Issue	HVDC Article No.	Non-exhaustive Requirement
Power Oscillation Damping Capability	30	 Frequency range of oscillations The network conditions when oscillations occur Agree control parameter settings
Power Oscillation Damping Capability	31(2)	 Specifications of extent of SSTI Input parameters
Power Oscillation Damping Capability	31(3)	 Identify all parties relevant at a connection point
Black Starts	37(1)	 Obtain quote for black start
Black Starts	37(2)	 Specify timeframe after shut down of the HVDC system Wider frequency ranges than Article 11 as required Wider voltage ranges than Article 18 as required
Black Starts	37(3)	Capacity of black startAvailability of black start
Stable Operation with Min & Max SC Power	42(b)	 The minimum of short circuit power The maximum of short circuit power Network characteristics of the HVDC interface point

Table 19: NC HVDC non-exhaustive requirements – System Restoration Issues

6.6.12 NC HVDC non-exhaustive requirements – Simulation Issues

Issue	HVDC Article No.	Non-exhaustive Requirement
Interaction Between HVDC and Other Plants/Equipment	29(2)	 Specify study required to examine interaction with adjacent equipment
Interaction Between HVDC and Other Plants/Equipment	29(3)	Specify all other relevant parties to the study
Interaction Between HVDC and Other Plants/Equipment	29(5)	 Models/information for use in studies
Interaction Between HVDC and Other Plants/Equipment	29(7)	 Specify transient levels of performance
Network Characteristics	32(1)	 Method for calculation Pre-fault conditions for minimum short circuit power Pre-fault conditions for maximum short circuit power Post fault conditions for minimum short circuit power Post fault conditions for maximum short circuit power
HVDC System Robustness	33(1)	 Specify changes in system conditions for HVDC system to remain stable
Electrical Protection Schemes and Settings	34(1)	 The protection schemes for internal electrical faults The protection settings for internal electrical faults
Electrical Protection Schemes and Settings	34(3)	 Acceptance of changes by owner to protection

Final Version | 1 December 2020

lssue	HVDC Article No.	Non-exhaustive Requirement
Electrical Protection Schemes and Settings	35(1)	Control modes for a control schemeParameters for a control scheme
Electrical Protection Schemes and Settings	35(2)	 Specify priority order of protection and control devices
Changes to Protection and Control Schemes and Settings	36(1)	Changes to control modesChanges to protections settings
Changes to Protection and Control Schemes and Settings	36(2)	 Coordination of changes and agreement
Changes to Protection and Control Schemes and Settings	36(3)	 Equipment specification to enable remote control of control modes and associated set points
Synchronization	41(1)	 Limits of any voltage change to a steady-state level (<5% pre- synchronisation voltage) Maximum magnitude of the voltage transients Duration of the voltage transients
Output Signals	41(2)	 Specify required output signals
Method of Pre-Fault and Post-Fault Conditions	42(a)	 Method for calculation Pre-fault conditions for minimum short circuit power Pre-fault conditions for maximum short circuit power Post fault conditions for minimum short circuit power Post fault conditions for maximum short circuit power
Equivalents Representing the Collection Grid	42(c)	 Provide network equivalent for harmonic studies
Electrical Protection Schemes	43(1)	Electrical protection schemesElectrical protection settings

Table 20: NC HVDC non-exhaustive requirements – Instrumentation, Simulation Models and Protection Issues

Final Version | 1 December 2020

7 Conclusion

The 2020 data reflects the implementation status of National Connection Network Codes in comparison to the three Connection Network Codes. The data was received from Member States during 2020 data monitoring and was then used to assimilate the results presented in this report.

7.1 Conclusion on implementation status of NC RfG capabilities

Section 3 details the results from the implementation of RfG.

For RfG there are two key conclusions, these being:

- The Capacity Thresholds between Type B, C and D Power Generating Modules are reflected in Figure 2, Figure 3 and Figure 4 with details of variations from RfG on a country by country basis being summarised in section 3.2.
- The number of implemented non-exhaustive requirements in RfG (Figure 5) and the RfG Values / Ranges according to the requirements in the National Codes (Figure 6).

The Capacity Thresholds on a country by country basis are well documented in section 3.1 and 3.2 of this report. If the reader is interested in the detailed findings of the Capacity Thresholds on a country by country basis, they are encouraged to read these sections of the report.

So far as the number of implemented non-exhaustive requirements in RfG and the RfG Values / Ranges it is worth providing a brief conclusion.

Figure 5 details the number of implemented requirements in RfG. The more detailed data relating to Frequency Issues, Fault Ride Through Issues, Voltage & Reactive Power, System Restoration Issues & Instrumentation, Simulation Models & Protection are presented in Figure 7 to Figure 169 on a country by country basis.

Based on Figure 5 (Implemented requirements in RfG) across all countries, a total of 3776 are general requirements, 486 are site specific requirements and 203 are mandatory requirements but have not been considered and therefore not implemented yet. These figures have been derived by adding each category in Figure 5 (i.e. general requirements, site specific requirements and non-implemented values) which gives an indication of how the requirements across the whole of Europe have been implemented.

As a benchmark (from Figure 5) it is noted that under RfG there are 168 general requirements and 28 requirements which can be agreed on a site specific basis.

Based on Figure 6 (RfG Values / Ranges according to the requirements in the National Codes) across all countries, a total of 3223 were based on general ranges / values which were implemented in National Codes, 1015 are based on site specific requirements and 203 are mandatory requirements but have not been considered and therefore not implemented yet. These figures have been derived by adding each category in Figure 6 (i.e. general requirements, site specific requirements and non-implemented values) which gives an indication of the wide variation of values across Europe.

As a benchmark (from Figure 6), it is noted that under RfG, there are 139 values which can be specified at a general level in National Codes and 57 values which can be agreed on a site specific basis.

Final Version | 1 December 2020

7.2 Conclusion on implementation status of NC DCC capabilities

Section 4 details the results from the implementation of DCC.

An overview of the results is shown in Section 4.1 (Number of Implemented non-exhaustive requirements in DCC which are represented in Figure 199 and Figure 200). The more detailed data relating to Frequency Issues, Voltage Issues, System Restoration Issues & Instrumentation, Simulation Models & Protection are presented in Figure 201 to Figure 304 on a country by country basis.

Based on Figure 199 (DCC requirements as such in National Codes) across all countries, a total of 649 are general requirements, 257 are site specific requirements and 52 are mandatory requirements but have not been considered and therefore not implemented yet. These figures have been derived by adding each category in Figure 199 (i.e. general requirements, site specific requirements and non-implemented values) which gives an indication of how the requirements across the whole of Europe have been implemented.

As a benchmark (from Figure 199) it is noted that under DCC, there are 36 general requirements and 11 requirements which can be agreed on a site specific basis.

Based on Figure 200 (DCC Values / Ranges according to the requirements in the National Codes) across all countries, a total of 361 were based on general ranges / values which were implemented in National Codes, 496 are based on site specific requirements and 70 are mandatory requirements but have not been considered and therefore not implemented yet. These figures have been derived by adding each category in Figure 200 (i.e. general requirements, site specific requirements and non-implemented values) which gives an indication of the wide variation of values across Europe.

As a benchmark (from Figure 200), it is noted that under DCC, there are 17 values which can be specified at a general level in National Codes and 30 values which can be agreed on a site specific basis.

7.3 Conclusion on implementation status of NC HVDC capabilities

Section 5 details the results from the implementation of HVDC.

An overview of the results are shown in Section 5.1 (Number of Implemented non-exhaustive requirements in HVDC which are represented in Figure 305 and Figure 306). The more detailed data relating to Frequency Issues, Voltage Issues, System Restoration Issues & Instrumentation, Simulation Models & Protection are presented in Figure 307 to Figure 436 on a country by country basis.

Based on Figure 305 (HVDC requirements as such in National Codes) across all countries, a total of 3842 are general requirements, 587 are site specific requirements and 585 are mandatory requirements but have not been considered and therefore not implemented yet. These figures have been derived by adding each category in Figure 305 (i.e. general requirements, site specific requirements and non-implemented values) which gives an indication of how the requirements across the whole of Europe have been implemented.

As a benchmark (from Figure 305) it is noted that under the HVDC Code there are 241 general requirements and 8 requirements which can be agreed on a site specific basis.

Final Version | 1 December 2020

Based on Figure 306 (HVDC Values / Ranges according to the requirements in the National Codes) across all countries, a total of 2588 were based on general ranges / values which were implemented in National Codes, 1798 are based on site specific requirements and 585 are mandatory requirements but have not been considered and therefore not implemented yet. These figures have been derived by adding each category in Figure 306 (i.e. general requirements, site specific requirements and non-implemented values) which gives an indication of the wide variation of values across Europe. As a benchmark (from Figure 306), it is noted that under HVDC, there are 171 values which can be specified at a general level in National Codes and 78 values which can be agreed on a site specific basis.