Nordic Balancing Philosophy

Updated 2021-11-10
Table of content:

1. **Abbreviations and definitions**

2. **Purpose**

3. **Framework for balancing**
 - 3.1 Quality standards
 - 3.1.1 Frequency quality
 - 3.1.2 Time control process
 - 3.2 Responsibilities for balancing
 - 3.2.1 TSO responsibility for balancing
 - 3.2.2 Distinction of TSO and BRP responsibility of balancing
 - 3.3 Operational planning data
 - 3.3.1 Productions plans – basic definitions
 - 3.3.2 Production forecast
 - 3.3.3 Consumption forecast
 - 3.3.4 HVDC scheduling
 - 3.4 Products for balancing
 - 3.4.1 Fast Frequency Reserves (FFR)
 - 3.4.2 Frequency Containment Reserves (FCR–N and FCR–D)
 - 3.4.3 Frequency Restoration Reserves (automatic and manual)
 - 3.5 Pricing methods
 - 3.5.1 Balancing energy prices
 - 3.5.2 Price for BRP imbalances
 - 3.5.3 Publishing of prices
 - 3.6 Ramping of exchange on HVDC connections
 - 3.7 Tools for the operators

4. **Balancing process**
 - 4.1 Before day-ahead market closing
 - 4.1.1 Adequacy for mFRR
 - 4.1.2 Allocation of capacity for exchange of reserves in the planning phase
 - 4.2 After day-ahead market closing
 - 4.3 After intraday gate closure
 - 4.4 During operational hour
 - 4.4.1 Need of activation for low/high frequency with no congestions
 - 4.4.2 Need of activation for high/low frequency with exceeding NTC
 - 4.4.3 Need of activation for high/low frequency and with “full” grid corridors
 - 4.4.4 Congestion management

5. **Topics for/under development**
 - 5.1 Nordic mFRR EAM (Governed by Nordic Balancing Model program, NBM)
 - 5.2 Nordic aFRR CM (Governed by Nordic Balancing Model program, NBM)
 - 5.3 15 min ISP (Governed by Nordic Balancing Model program, NBM)
 - 5.4 New specifications for FCR (Governed by Regional Group Nordic, RGN)
 - 5.5 FRR dimensioning (Governed by Regional Group Nordic, RGN)
 - 5.6 FCR-down (Governed by Regional Group Nordic, RGN)
 - 5.7 Ramping restriction (Governed by Regional Group Nordic, RGN)
 - 5.8 Flow-based capacity calculations (Governed by Market Steering Group)

1 Abbreviations and definitions

‘ACE’ means the sum of the power control error (\(\Delta P\)), that is the real-time difference between the measured actual real time power interchange value (\(P\)) and the control program
(‘P0’) of a specific LFC area or LFC block and the frequency control error (‘K*Δf’), that is the product of the K-factor and the frequency deviation of that specific LFC area or LFC block, where the area control error equals ΔP+K*Δf. ‘K-factor of an LFC area or LFC block’ means a value expressed in megawatts per hertz (‘MW/Hz’), which is as close as practical to, or greater than the sum of the auto-control of generation, self-regulation of load and of the contribution of frequency containment reserve relative to the maximum steady-state frequency deviation.

‘aFRR’ or ‘automatic FRR’ means FRR that can be activated by an automatic control device.

‘Balancing market’ means the entirety of institutional, commercial and operational arrangements that establish market-based management of balancing.

‘Balance Operators’ mean the operators at Svk and SN responsible for balancing the Nordic synchronous area.

‘Balance responsible party’ or ‘BRP’ means a market participant or its chosen representative responsible for its imbalances.

‘Balance service provider’ or ‘BSP’ means a market participant with reserve-providing units or reserve-providing groups able to provide balancing services to TSOs.

‘Blackout state’ means the system state in which the operation of part or all the transmission system is terminated.

‘Electrical time deviation’ means the time discrepancy between synchronous time and coordinated universal time (‘UTC’).

‘Emergency state’ means the system state in which one or more operational security limits are violated.

‘Fast Frequency Reserves’ or ‘FFR’ mean a fast product to contain frequency in addition to FCR, introduced to help stabilize the system during times of low system inertia.

‘Frequency Containment Reserves’ or ‘FCR’ means the active power reserves available to contain system frequency after the occurrence of an imbalance.

‘Frequency restoration control error’ or ‘FRCE’ means the control error for the Frequency Restoration Process (FRP) which is equal to the ACE of a LFC area.

Frequency Restoration Process’ or ‘FRP’ means a process that aims at restoring frequency to the nominal frequency and, for synchronous areas consisting of more than one LFC area, a process that aims at restoring the power balance to the scheduled value.

‘Frequency Restoration Reserves’ or ‘FRR’ means the active power reserves available to restore system frequency to the nominal frequency and, for a synchronous area consisting of more than one LFC area, to restore power balance to the scheduled value.

‘High-voltage direct current’ or ‘HVDC’ means an electric power transmission system that uses direct current (DC) for transmission of electrical energy.

‘Imbalance Settlement Period’ or ‘ISP’ means the period over which the imbalances of a BRP will be settled.

‘LFC block monitor’ means a TSO responsible for collecting the frequency quality evaluation criteria data and applying the frequency quality evaluation criteria for the LFC block.
‘Load-frequency control block’ or ‘LFC block’ means a part of a synchronous area or an entire synchronous area, physically demarcated by points of measurement at interconnectors to other LFC blocks, consisting of one or more LFC areas, operated by one or more TSOs fulfilling the obligations of load-frequency control.

‘Low frequency demand disconnection’ or ‘LFDD’ means a backup measure to limit the fall in grid frequency in extreme events.

‘mFRR’ or manual FRR’ means Frequency Restoration Reserves with manual activation.

‘(N-1) situation’ In case of an (N-1) situation caused by a disturbance, each TSO shall activate a remedial action to ensure that the transmission system is restored to a normal state as soon as possible and that this (N-1) situation becomes the new N-Situation.

‘Nordic Operational Information System or ‘NOIS’ is the common Nordic operational IT system processing real-time supervision and validation of planning data and is common platform for balancing energy, mFRR bids.

‘Nordic synchronous area’ includes the subsystems of Norway, Sweden (including the subsystem of Kraftnät Åland), Finland and Eastern Denmark which are synchronously interconnected, forming the Nordic synchronous area. The subsystem of Western Denmark is interconnected to the Nordic synchronous system using DC interconnectors. The Nordic synchronous area and the subsystem of Western Denmark jointly constitute the interconnected Nordic power system.

‘Net transmission capacity’ or ‘NTC’ is the maximum grid capacity available for exchange in markets. NTC equals TTC subtracted by TRM; (see also ‘TTC’ and ‘TRM).

‘Operational security’ means the transmission system’s capability to retain a normal state or to return to a normal state as soon as possible, and which is characterized by operational security limits.

‘Operators’ means the operators from any Nordic TSO; (see also Balance Operators).

‘RGN’ is the ‘Regional Group Nordic’. RGN conduct and promote the cooperation between the Nordic TSOs with the aim of ensuring a reliable operation, optimal management and technical development of the Nordic synchronous area.

‘Reference incident’ means the maximum positive or negative power deviation occurring instantaneously between generation and demand in a synchronous area, considered in the FCR dimensioning.

‘Supervisory control and data acquisition’ or ‘SCADA’ is a control system applied by the TSO.

‘SOA’ is the System Operation Agreement between the Nordic Transmission System Operators.

‘SOGL’ is the guideline on electricity transmission system operation.

‘Synchronous area framework agreement policies’ or ‘SAFA policies. Agreement to provide the legal framework for the operation of the interconnected grids by the TSOs of the Synchronous Area of Continental Europe.

‘Synchronous area monitor’ means a TSO responsible for collecting the frequency quality evaluation criteria data and applying the frequency quality evaluation criteria for the synchronous area.
‘Time control process’ means a process for time control, where time control is a control action carried out to return the electrical time deviation between synchronous time and UTC time to zero.

‘Transmission reliability margin’ or ‘TRM’. TRM is a security margin that copes with uncertainties on the computed TTC values arising from unintended deviations of physical flows emergency exchanges between TSOs in real time and inaccuracies, e.g., in data collection and measurements.

‘Total transmission capacity’ or ‘TTC’ means the total transmission capacity on an interconnector. TTC is the maximum transmission of active power in accordance with the system security criteria which is permitted in transmission cross-sections between the Nordic subsytems.
2 Purpose

The purpose of this document is to describe the current Nordic balancing principles and procedures as information for external and internal stakeholders to promote a common understanding of the strategy behind the current Nordic rules and procedures for balancing. The report focuses on describing the current rules and procedures but will also indicate planned changes or adjustments, e.g., related to the implementation of a new ACE based model in the Nordics. This document may be a basis for related development work in Nordic or national groups.

The Nordic balancing is undergoing development especially within the Nordic Balancing Model\(^1\). The ambition is to update this document regularly (each year) or more often if there are significant changes in the balancing procedures.

3 Framework for balancing

The Nordic TSOs have agreed principles and procedures for balancing in the Nordic System Operation Agreement (SOA). In addition, the TSOs have made an agreement for future balancing, The Cooperation Agreement.

3.1 Quality standards

3.1.1 Frequency quality

TSOs aim for keeping the frequency within the normal frequency band (standard frequency range), which means a defined symmetrical interval of 100mHz around the nominal frequency of 50.00 Hz.

The maximum value of minutes outside the normal frequency band is regulated in SOGL to be no more than 15 000 min/year. The Nordic TSOs have agreed upon a goal for frequency deviations outside normal frequency band to be no more than 10 000 min/year. (ref. to Regional Group Nordic (RGN) decision 9 May 2014)

Frequency outside the normal frequency band, means an increased risk for insufficient available FCR to hinder frequencies outside of the defined maximum values in case of a large fault in the system.

Since for technical reasons the operational range of generators is limited to a certain system frequency range on both sides of 50 Hz, frequency deviations outside of this range may trigger the automatic protection mechanisms leading to a disconnection of generators. Very low frequencies may also trigger automatic disconnection of demand. In worst case, these events may lead to blackouts in parts of the synchronous area.

Elaboration of understanding:

The Nordic TSOs have automatic frequency restoration reserves (aFRR) available in more than 50% of the hours. The aFRR controller will in those hours strive to maintain 50.00 Hz. The Balance Operators will however not necessarily strive to always maintain exactly 50.00 Hz, when activating manual frequency restoration reserves (mFRR). They rather try to optimize operation within the standard frequency range on both sides of 50 Hz, frequency deviations outside of this range may trigger the automatic protection mechanisms leading to a disconnection of generators. Very low frequencies may also trigger automatic disconnection of demand. In worst case, these events may lead to blackouts in parts of the synchronous area.

1 Nordicbalancingmodel.net
TSOs aim for coordinating activation of aFRR and mFRR together to avoid too long lasting aFRR saturation.

The frequency deviation is followed up weekly and a frequency statistics report is created by Statnett (Landssentralen) and forwarded to the other TSOs. The frequency statistics is reported to RGN on a regular basis by Nordic Operations Group (NOG). The development over the years is shown in Figure 1.

Figure 1: The minutes outside the standard frequency range for each year in the period 2011-2020 compared with the maximum value of 15 000 min/year in SOGL and the target of not more than 10 000 min/year.

3.1.2 Time control process

The objective of the time control process is to maintain the design criteria of 50,00 Hz as the mean frequency and to keep activation of normal Frequency Containment Reserve energy delivery close to zero over time.

The Synchronous area monitor (Svk) has the responsibility to maintain the electrical time deviation within a time range of ± 30 seconds. If the time deviation has reached ± 15 seconds, the Balance Operators of the Synchronous area shall make a plan to reduce the time deviation. In hours with aFRR available, the aFRR controller automatically and continuously adjusts the frequency target slightly to keep time deviation low.

3.2 Responsibilities for balancing

Balancing energy activation is activation in order to maintain the Nordic frequency in accordance with the set quality standards.

3.2.1 TSO responsibility for balancing

Within each country the respective TSO is responsible for operational security which includes having sufficient resources available for maintaining the operational security within the operational limits. This may include agreements/arrangements with other TSOs with available grid capacity.

Article 152 in SOGL dictates that: “Each TSO shall operate its control area with sufficient upward and downward active power reserve, which may include shared or exchanged reserves,
to face imbalances between demand and supply within its control area. Each TSO shall control the FRCE as defined in the Article 143 in order to reach the required frequency quality within the synchronous area in cooperation with all TSOs in the same synchronous area.”

Elaboration of understanding:
The TSOs have agreed that Nordic balancing process shall be conducted in such a way that activation of balancing resources take place at the lowest cost considering congestions in the grid, current legislation and secure operations.

The balancing process is divided into two balancing areas. Svenska kraftnät and Statnett operate the balancing for the synchronous area by activating mFRR and aFRR from their control areas and initiating FRR activation for other control areas while Energinet balance DK1.

Each TSO is responsible for, that sufficient balancing measures are available for the TSO to handle imbalances that may occur within its control area as well as potential fault situations. The TSOs shall see to that the flow on the interconnectors to other control areas can be adjusted if needed to correspond to the resulting schedule from the energy markets.

The TSOs shall also have measures to handle reduced transmission capacity in case of tripping of lines or for other reasons after confirmation of the schedule from the energy markets.

Imbalances in each control area shall not lead to violation of the operational security limits in other control areas or burden other control areas (subsystems).

In case of an operational N-1 disturbance, the power system must have been restored within 15 minutes. The system is restored when it once again complies with the operational security limits. The system is not dimensioned to handle multiple operational disturbances within the same 15-minute period or a new large operational disturbance shortly after the first 15-minute period.

As the Nordic TSOs cooperate in using reserves in a region in common balancing arrangements, a prerequisite for the arrangements is that the TSOs are collectively responsible for making sufficient reserves available for regional balancing with minimum volumes agreed between the TSOs in the region. Location of the reserves may be considered from a regional perspective taking congestions in the grid into account. This does not reduce the national TSO responsibility but contributes to a more efficient use of the regional resources.

The TSOs are responsible for the ability to balance their own control area. For regional balancing, the TSOs are responsible for making reserves available with minimum volumes agreed between the TSOs in the region.

3.2.2 Distinction of TSO and BRP responsibility of balancing

In the Nordic balancing strategy, the BRPs are expected to balance their portfolio per hour before operational hour. This is done by trade in day-ahead, in the intraday market and bilateral trade between BRPs within bidding zones. Gate closure for intraday trading is 1 hour before operational hour except for Finland which has later internal gate closures. Gate closure for bilateral trade is not harmonised.

After day-ahead trade, the BRPs will provide the TSOs with information needed for balancing such as preliminary production plans for the next day. Possible updates to the production plans can be sent until 45 minutes before operational hour. As gate closure for intraday trade in Finland is different, Finnish BRPs can update their production plans until 25 min before operational hour.
The BRPs shall follow the production plans delivered to their respective TSO for their portfolio. The TSOs will monitor if there will be large and/or systematic deviations in realised production compared with the plans. If needed, the TSOs will ask for clarification and corrective actions from BRPs.

After final updates of the production plans, the responsibility for balancing is taken over by the TSOs.

System imbalances may occur right up until and during the actual operational hour. Some imbalances are unforeseeable while the TSOs can prepare themselves for others. The imbalances are due to:

- Current market setup where the trade is performed on hourly basis whilst the consumption changes continuously. This means that there will be imbalances within the hour even if the BRP plans are correctly balanced for the hour.
- Differences between forecasted and actual consumption and production.
- Events causing loss of production or consumption.
- Differences between hourly energy plans and actual flow on HVDC (ramping)
- Special regulations by the TSOs.
- Self-balancing by BRPs.

The Nordic TSOs are the ones who before and during operational hours have the best overall information regarding the balance situation and potential grid congestions. The Nordic TSOs balance the system by using the cheapest available mFRR bids in the Nordic area considering the congestions.

It is the responsibility of the TSO to balance the system by using available means after final updates of the production plans and during the operational hour to maintain the frequency and to secure a stable operation.

3.3 Operational planning data

3.3.1 Productions plans – basic definitions

Production plan is a schedule with hourly or quarterly resolution that BRPs send to the TSOs to notify the TSO about expected production.

- **Hourly production plan** (market notification in Denmark) is the hourly production schedule the BRPs send to the TSO with hourly resolution.
- **Quarterly production plan** is a production schedule with quarterly resolution. Requirements for quarterly production plan are rules describing that quarterly production plans must be made in a specified way (applied in Norway and Sweden).
- **Operational schedules for DK1 and DK2** are power schedules with 5 minutes resolution; the schedules shall be updated at any time by the BRP if changes occur in planned production. Lack in conformity between schedule and production will have impact on the balance settlement.

3.3.1.1 Tools for the TSO to adjust production plans

Quarterly adjustments of hourly production plans
This is a requirement applied by the TSOs in Finland, Sweden and Norway on the BRP when the hourly production plan changes more than 200 MW at hour shift to reschedule their plan
with quarterly steps 15 minutes before hour shift, at hour shift and 15 minutes after hour shift. This is to adjust the plans to better correspond to the consumption and HVDC ramping pattern.

Smoothing of hourly production plans
In Norway a voluntary alternative to the requirement above, "Smoothing", is implemented. The system service allows the TSO to reschedule hourly production plans D-1 into production plans with quarterly steps. In the smoothing process, Statnett levels out hourly plans in quarterly steps based on known information at the time to reduce deterministic imbalances per quarter.

Production shift schedules is a system service used after intraday gate closure that allows the TSO to reschedule the changes in the production plans to better correspond to the consumption and HVDC ramping pattern.

3.3.2 Production forecast

In addition to the production plans sent by the BRPs, the TSOs make own production forecast for intermittent production like wind power, which are used in the planning of balancing.

3.3.3 Consumption forecast

Each TSO has its own tools for a consumption forecast which are used in the planning of balancing. The tools are based on historical data and are calendar- and temperature dependent.

BRPs do not send their forecast of consumption as separate information to the Nordic TSOs.

3.3.4 HVDC scheduling

The HVDC schedules are based on the hourly results for exchange between bidding zones separated by DC cables in the day-ahead and intraday energy markets. These exchange plans are converted to power plans according to specific rules. The rules are determined by regional needs (frequency, congestions), local needs (voltage, local congestions) and administrative rules agreed between TSOs.

The HVDC scheduling process is operated bilaterally between the connected TSOs.

3.4 Products for balancing

To balance a system, different types of reserves must be available.

Since the grid is not a copperplate and congestions occur in the grid, there is a need for a distribution of the reserves through specific agreements (SOA) or market arrangements.

The reserve products used in the Nordic power system are shown in Figure 2.
3.4.1 Fast Frequency Reserves (FFR)

The objective of the Fast Frequency Reserve (FFR) is to assist the Frequency Containment Process (FCP) during times of low system inertia to such an extent that after a sudden imbalance the frequency change can be successfully stopped before the instantaneous frequency deviation would have reached the maximum instantaneous frequency deviation. The ultimate objective of FFR is to prevent for Low Frequency Demand Disconnection (LFDD).

FFR is procured only as upregulation when the system inertia is so low and the size of the reference incident is so high that the Frequency Containment Reserve for Disturbances (FCR-D) alone is not able to contain the frequency before reaching the maximum instantaneous frequency deviation in case the reference incident were to occur.

3.4.2 Frequency Containment Reserves (FCR-N and FCR–D)

Frequency containment reserves have the purpose of balancing the system within the normal frequency band and in case of disturbances.

3.4.2.1 Frequency Containment Reserve - Normal (FCR-N)

FCR-N is a specific Nordic product with the purpose of balancing the system within the normal frequency band (49.90<f<50.10 Hz). FCR-N is not used in DK1.

According to SOA, the FCR-N shall be at least 600 MW in the synchronous area. This volume is divided between the control areas within the synchronous area as national requirements on the basis of annual consumption and production in Eastern Denmark, Finland, Norway and Sweden. The consumption and production for the previous calendar year are used for calculating the control area-based volumes for the coming year.

3.4.2.2 Frequency Containment Reserve – Disturbance (FCR-D)

FCR-D has the purpose of balancing the system in case of disturbances where frequency drops below 49.90 Hz or above 50.10 Hz (from 2022) and to stabilize the frequency after the disturbance. After a large disturbance in production, consumption or HVDC, inertia prevents...
the frequency from dropping below or above an acceptable level before FCR-D stabilizes the frequency at a steady state level.

According to SOA there shall be a FCR-D of such a volume and composition that a Reference Incident (RI) (largest fault of production or HVDC interconnectors) does not cause a steady state frequency below 49.5 Hz or above 50.5 Hz in the synchronous system.

![Image: Graph showing frequency response](image)

*Figure 3: Simplified you may say that the inertia defines the lowest frequency point after the Nordic RI, the FCR-D defines the steady state frequency and the FRR defines the time to restore frequency (TRF). The minimum acceptable steady state frequency is 49.5 Hz

The activation of the FCR-D shall not result in other problems in the power system. When the transmission capacity is being determined, the location of the FCR-D shall be taken into account in the TTC calculation.

Distribution of the requirement for the FCR-D between the TSOs shall be according to the same distribution key as for FCR-N. The requirements are updated each day.

The 2/3 rule:
According to the SOA, each TSO shall have at least 2/3 of their initial FCR obligation in its own control area. The 2/3 obligation can be partly fulfilled by guaranteed FCR provision from another synchronous area.

RGN has decided exceptions from this rule for Energinet and Fingrid within certain limits. This is conditioned on that grid capacity is available to transfer the extra volume of FCR cross national interconnections. Countertrade is made when needed.

Statnett also practices a limitation on sale of FCR of max 1/3 of Norway’s FCR requirement. This means e.g., that Norway cannot deliver 1/3 of the requirement of both Sweden and Finland in the same hour.

3.4.3 Frequency Restoration Reserves (automatic and manual)
Frequency restoration reserves are necessary to bring the frequency back to 50 Hz after a frequency deviation has occurred and by that restore the activated FCR. FRR can be both automatic and manually activated. Manual FRR is also used to mitigate congestions.

3.4.3.1 Automatic Frequency Restoration Reserve (aFRR)
The product aFRR was introduced in the Nordics in January 2013. The background for implementing and developing aFRR in the Nordic was the deteriorating frequency quality and aFRR was identified and agreed upon as one of the main measures to stop the weakening trend of
the frequency quality. aFRR has a faster response than mFRR and will due to that restore the frequency faster than mFRR.

The aFRR product shall be seen as an automatic “complement” to mFRR in the FRR process. aFRR activations shall handle short term variations in imbalance which are not appropriate to be handled by mFRR activations.

The aFRR reserve differs from FCR in the way that the reserve is remotely controlled by a centralised controller while FCR is locally controlled. There is also a difference in activation time. In hours where aFRR is active, there is an interaction between FCR and aFRR where FCR stabilizes the frequency while aFRR brings frequency back to 50.00 Hz given sufficient available volumes.

aFRR can be exchanged between synchronous systems. To secure this, a reservation of grid capacity may be necessary.

aFRR volumes and procurement hours for the Nordic Synchronous Area are decided on a Nordic level and distributed between TSOs by an agreed distribution factor.

The dimensioned amount of aFRR capacity shall be based on the targeted frequency quality and shall include the hours where the frequency variations are most challenging. The dimensioned aFRR capacity will be at least 300 MW.

3.4.3.2 Manual Frequency Restoration Reserve (mFRR)

The manual part of FRR, mFRR, is used for balancing and to handle congestions in normal and disturbance situations. mFRR is the main balancing resource which when activated replaces both remaining FCR and aFRR activations and brings frequency back to the frequency target. In case of proactive activations, the mFRR may be activated in the opposite direction of FCR and aFRR. Due to limited volume of aFRR and many congestions in the grid, the Nordic system is dependent on mFRR activations. It is expected that mFRR will continue to be the main balancing resource in the system but that aFRR volumes will increase and be used continuously.

The mFRR capacity dimensioned for the control area shall at least cover the reference incident of the control area, in which the ‘reference incident’ is defined as the maximum positive or negative power deviation occurring instantaneously between generation and demand, means ‘the largest imbalance that may result from an instantaneous change of active power of a single power generating module, single demand facility, or single HVDC interconnector or from a tripping of an AC line within the control area. Both upward and downward mFRR shall be dimensioned.

The BSP can submit bids to the Nordic mFRR market. The mFRR market is a tool for the TSOs to perform the balancing and is set up in a market-based way meaning that the mFRR bids are activated in price order when needed. This is considered as an efficient (and a socio-economic) way of using the Nordic resources.

The required activation time in the mFRR market (15 min) was initially a Nordic compromise between need for frequency and congestion control and the need for liquidity in the market. Different delivered response times of different production units, e.g., hydro and slower thermal plants have to be taken into account in the balancing process in stressed situations. In addition to 15 min mFRR, automatic reserves and mFRR with faster response time than 15 min secure that the system, after an operational disturbance, can be restored within the normal frequency band within Time to Restore Frequency (TRF) which is 15 min.
There are different capacity arrangements for mFRR in the Nordic countries. Both voluntary mFRR bids and resources that TSOs pay capacity payment for are submitted to the mFRR market for activation. The reserves with capacity payment are for securing capacity for disturbances, congestions, or imbalances. Peak load reserves may also be available for the mFRR market. The different resources are gathered in a Nordic merit of order list for activation (Nordic mFRR list).

FCR stabilizes the frequency while FRR brings frequency back to the frequency target. All categories of reserves need to be distributed in the system due to congestions in the grid.

Use of mFRR for special regulation

Special regulation means activation of mFRR bids ordered by TSO in the mFRR market for a reason other than the needs of balance management. For this purpose, TSO uses mFRR bids which are suitable in terms of congestion management or other specific reasons, and the mFRR bids are not necessarily used in the price order.

Special regulation is priced in accordance with the bid activated; however, in case of up-regulation, the special regulation price must be higher than or equal to the balancing energy price for the hour in question. Correspondingly, in case of down-regulation, the special regulation price is lower than or equal to the balancing energy price for the hour in question. Special regulation is not considered in the determination of the price of imbalance power.

Interaction between Nordic and other synchronous areas

mFRR can be traded from a power system outside the common Nordic mFRR market to support or balance any Nordic bidding zone. There are currently different rules whether mFRR activated from an adjacent power system outside the Nordic mFRR market shall influence the pricing in the mFRR market in the same way as bids ordered from the Nordic mFRR list (NOIS).

The Nordic mFRR market can also support surrounding systems with mFRR for balancing of those systems. Currently this is not influencing the marginal pricing in the Nordic mFRR market. Only actions taken to balance the Nordic system shall influence the mFRR price in the Nordic mFRR market.

There is also the possibility to use imbalance surplus or deficit without activating mFRR for exchange with other systems.

The TSOs are currently applying different rules for bid activations due to disturbances and reduced capacity on interconnectors from the Nordic countries.

3.5 Pricing methods

3.5.1 Balancing energy prices

The objective is the optimal use of the mFRR bids in the merit order and the balancing energy price is determined by the marginal price for activated mFRR bids up and/or down respectively for each market time unit (MTU). When congestion occurs between two bidding zones in the operational phase, the TSOs jointly determine when the zones no longer can be mutually regulated. If it is not possible to use the mFRR bids in price order, a splitting of the balancing energy prices occurs.

Mutually balanced areas consist of several bidding zones which obtain the same balancing energy prices. The reasons for different balancing energy prices of different bidding zones can
be excess transmission on corridors between bidding zones, or if trading or operational rules restrict activation of bids from the Nordic mFRR list (NOIS) in the price order. The TSOs determine jointly when and between which zones the separation of balancing energy prices occurs.

3.5.2 Price for BRP imbalances

In case there is an activation of mFRR in the uncongested area, a dominating direction for activation for each market time unit (MTU) will be established to determine the imbalance price for BRPs. The dominating direction which will be either "Up" or "Down", corresponds to the net positive (upward) activation of mFRR or net negative (downward) activation of mFRR respectively for balancing purposes.

In case there is no activation of mFRR in the uncongested area in a market time unit (MTU), the day-ahead price will be used as the imbalance price.

3.5.3 Publishing of prices

The regulating prices are not determined until the hour has passed. This is because there is a need for assessing which mFRR bids that have been used for normal balancing and which for congestions in order to determine the correct prices for the market.

During normal operation, prices and volumes are to be published no later than 60 minutes after the hour of operation.

It is important that the market receives a correct price signal on an accurate base. In order to avoid self-balancing from BRP that could disturb the balancing process performed by the TSOs, preliminary prices are currently not published during operational hour. However, a TSOs can also publish preliminary prices in real-time when a TSO is operating as its own balancing area and using only locally balancing resources.

3.6 Ramping of exchange on HVDC connections

The trading plans on the HVDC interconnectors from the Nordic synchronous area change so much from one hour to the next that the changes in power flows at the change of hours must be restricted to be able to manage the balancing process. Restrictions are placed on speed of change of the flows.

The ramping restrictions were initially determined on the basis that the total change for the Nordic synchronous system at one hour shift should not exceed an acceptable maximum level.

As a basic rule, the change may be a maximum of 600 MW from one hour to the next on each of the interconnectors.

Ramping rules will be evaluated/changed in steps to adopt to new HVDC interconnectors and implementation of a new Nordic balancing model including 15 min ISP.

3.7 Tools for the operators

The TSOs balance the system based on the information that is available for the operators. Each TSO has their own real time monitoring and control system (SCADA) and a planning system.

The TSOs also have their own systems for forecasting consumption and wind and even if the bases for them are similar there are some differences as well.
As one tool to collect the planning data on a Nordic level, the Nordic TSOs use a common platform called NOIS (Nordic Operational Information System). The NOIS system was introduced in 2002 and has since then been developed to match upcoming needs and new operational functions used for Nordic coordination have been implemented.

The information compiled in NOIS is meant to give the operators a basis on which they can plan and estimate the need of balancing in the upcoming hours. As the information in NOIS is provided by each TSO it is of great importance that the submitted data is comparable when it comes to resolution and quality to be able to perform proactive balancing.

An important part in the balancing process is the ability to compare the planning data with real time measurements. This gives valuable and immediate information on trends that can be used when deciding balancing actions. There are currently different levels of detailed real time information among the TSO’s, and this is therefore an area where development is needed.

The TSOs are currently developing several common Nordic IT tools as a result of the planned implementation of the new ACE based balancing model.

4 Balancing process

Balance energy activation within the synchronous system shall be conducted in such a way that specified quality standards regarding frequency and time deviation are met. Requirements regarding frequency response and automatic reserves shall also be maintained. Furthermore, activation of mFRR bids shall be conducted in such a way that the transmission capacity is not exceeded.

The planning of balancing is based on all available information from all TSOs. It is Statnett and Svenska kraftnät, the Balance Operators, which jointly decides and executes the balancing actions. Sweden and Norway represent approx. 75% of the annual consumption of the synchronous area and thus it is agreed in the SOA that Svenska kraftnät and Statnett have the task of maintaining the frequency and time deviation within the set limits.

In addition, Nordic TSOs have agreed that Svenska kraftnät has the role as Synchronous Area Monitor while Statnett has the role as LFC block Monitor.

Energinet belongs to two different synchronous areas. Although DK1 is part of the Nordic mFRR market, DK1 is balanced as its own area inside the Central European synchronous system and shall keep its balance on the Danish – German border. Activation of reserves in DK2 for optimisation of the balance in the Nordic system is done in cooperation with the Balance Operators.
4.1 Before day-ahead market closing

The operational balancing process can be considered as a long-term process starting years ahead entering into long term capacity contracts with suppliers of reserves, followed by long to short term outage planning, long to short term grid capacity planning on interconnectors, ending up with forecasts for power balance and dynamic stability from weeks before, days ahead up to the hour of operation.

The following text focuses on the balancing process that takes place a couple of weeks ahead of real time and later.

4.1.1 Adequacy for mFRR

A common Nordic objective is to assess sufficiency in available resources in the balancing with respect to always being able to respect the N-1 criteria. If sufficiency cannot be ensured by normal procedures, specific actions need to be taken. Thus, this is especially important in situations with risk of power shortage or lack of mFRR bids in either direction. For the assessment, each TSO makes a power balance evaluation in various time frames.

Methods to ensure availability of resources for balancing

Statnett has a seasonal and weekly capacity market (RKOM) for mFRR where called bidders are obliged to bid into the mFRR market in upward or downward direction with contracted capacity. This option is used when Statnett considers that there is a risk for scarcity of bids in the mFRR market in either direction.

Svenska kraftnät has long term contracts to ensure sufficient mFRR capacity to handle the Swedish reference incident in upward direction. The capacity is offered in the mFRR market and submitted (by Svenska kraftnät) to the merit order list as “special mFRR bids”. In situations with several simultaneous outages on contracted capacity and where the volume for reference...
incident cannot be secured otherwise, a reduction of the transmission capacity for the energy markets is made.

Fingrid has own and contracted gas turbine capacity to ensure the sufficiency of mFRR resources in upward direction. Additionally, Fingrid has a capacity market to ensure the sufficiency e.g., during maintenance work in the gas turbine plants.

At Energinet, mFRR in DK2 is procured on monthly capacity contracts in monthly and daily capacity markets. In DK1 mFRR is procured on daily capacity markets for upregulation.

Svenska kraftnät and Energinet coordinate the mFRR in Southern Sweden and Eastern Denmark (south of cross-section 4) by summing up all available reserves in the region. If the total amount of reserves is not enough, the requirements will be distributed in accordance with the following distribution rules:

\[(\text{Reference Incident}) \times (\text{Own Reference Incident}) / (\text{Own Reference Incident} + \text{Counterparty Reference Incident})\]

Energinet shares reserves between DK1 and DK2 with an amount of up to 300 MW. The flow on the Great Belt connection is normally from DK1 to DK2. The free capacity in the opposite direction is used for sharing of reserves between DK1 and DK2. The volume of manual reserves in DK1 has been reduced by 300 MW. 600 MW of manual reserves are still maintained in DK2. Normally the amount of N-1 reserves in DK1 is covered by purchasing approx. 300 MW mFRR capacity before day-ahead market. In addition, there will be voluntary bids in the mFRR market. In the exceptional situations where the outcome of the day-ahead market has given a flow greater than 300 MW from DK2 to DK1 on the Great Belt connection, Energinet calculates whether it requires purchasing up to 300 MW of manual reserves in DK1 after day-ahead market.

Svenska kraftnät and Fingrid contract peak load reserves during winter season. The reserves are primarily to be used in the day-ahead market to prevent a curtailment situation. The volumes not used in the day-ahead market are available to the TSOs.

4.1.2 Allocation of capacity for exchange of reserves in the planning phase

The fact that the grid is not a copperplate, leads to requirements for distribution of all types of reserves. For each interconnection between bidding zones, a Total Transmission Capacity (TTC) is defined. From this capacity a margin, the Transmission Reliability Margin (TRM), is subtracted to find the maximum grid capacity available for exchange in markets, the Net Transmission Capacity (NTC). The NTC is normally made available for the energy markets (day-ahead and intraday). A prerequisite for this is that different types of reserves are distributed in the system to reduce the risk for system problems including overload in the grid.

The TSOs pre-define distribution of the reserves when this is beneficial from an economic perspective or necessary for system security.

4.2 After day-ahead market closing

After the day-ahead clearing, the BRPs submit preliminary plans on production and mFRR bids for the next day. Together with exchange plans between bidding zones due to trade on the day-ahead market, this gives the TSOs a first overview on how the next day is planned hour by hour. It gives e.g., indication if there will be congestions in some hours.

To ensure that sufficient resources are available an assessment is made both separately by each TSO but also by the Synchronous area/LFC block monitors. This assessment is made based on the following information:
• Preliminary forecast on consumption (hourly/quarterly resolution in TSO tools and operational experience of consumption pattern)
• Preliminary production plans (hourly and quarter resolution)
• Day-ahead exchange plans on AC- and DC-connections (hourly resolution, 5 min linear piecewise plans and knowledge of ramping pattern)
• Potential congestions from exchange schedules in the energy market
• Preliminary mFRR bids

During wintertime the first balancing action in Sweden and Finland is to consider if peak load reserves are needed for balancing and should be put/kept on stand-by for the next day. This is decided shortly after the day-ahead result is known.

Should there be a risk for lack of mFRR in Sweden or Finland, the responsible TSO asks for additional mFRR bids from the providers in the mFRR market. This is however only a request as there are no legal obligations for the BRP to participate or to submit all available capacity.

In Norway the bid volume in the mFRR market is evaluated and if found insufficient, BRPs are requested by instruction to bid in all available mFRR which have been registered as flexible at Statnett, both consumption and production.

After day-ahead market closing, Energinet receives market notifications and operational schedules from the BRPs. Although the balancing process when coming to hour of operation can be different for DK1 and DK2 the processes for planning the balances are the same for DK1 and DK2.

The operational schedules (5-minutes power schedules) comprise the BRPs’ operational schedules including regulating power, if relevant, and is used by Energinet for the continuous monitoring and handling of the balance in the power system.

Energinet checks that the BRP’s market notification for production, consumption or trade is in balance, the BRPs will receive a status report. Energinet also checks that the operational schedules for upcoming day have been forwarded and that mFRR bids for reserve obligations (long term contracts and daily auctions) has been forwarded.

4.3 After intraday gate closure

When plans and mFRR bids are known 45 minutes before operational hour, the Operators have the following updated information as basis for their planning of the balancing approximately one hour ahead:
• Updated forecast on consumption (hourly/quarterly resolution in TSO tools and operational experience of consumption pattern)
• Updated production plans (hourly and quarter resolution)
• Updated exchange plans on AC- and DC-connections (hourly resolution, 5 min linear piecewise plans and knowledge of ramping pattern)
• Potential congestions from exchange schedules in the energy market
• Available mFRR bids
• Real time information (note that there is some lack of available real time data for e.g. wind production)

All information above with exception on real time information is compiled in NOIS (see also chapter 3.7).

Based on the planning information in NOIS and real time information, Svenska kraftnät and Statnett are evaluating an expected balancing volume in the synchronous system in the next
hour and Energinet is doing the same for DK1. This is done by assessment of the present operational situation and estimate how this could remain or change depending on the plans for upcoming changes in production, consumption, and exchange.

Based on these evaluations an optimal use of mFRR bids in the two systems is agreed between relevant TSOs and new power schedules over HVDC are made. This is normally done 30-40 minutes before operational hour as ramping up or down on some of the HVDC connections currently starts 10-15 minutes before the hour shift. In normal cases the Operators make the final decision on which mFRR bids to activate from the start of the next hour approx. 15 min before the hour shift.

The mFRR bids are used in price order. However, there are some differences in the Nordics on how the reserves with capacity payment are activated vs. the voluntary mFRR bids.

Svenska kraftnät and Fingrid activate voluntary mFRR bids and bids reserved on the capacity market first and after those long-term pre-contracted reserves. This is due to that both the peak load and disturbance reserves can be seen as subsidized in comparison to the voluntary mFRR bids sent by BRPs. Peak load reserve can only be submitted to the mFRR market during the winter period in certain circumstances. Peak load reserves have priority to disturbance reserves in order of activation when available on the mFRR market.

When activating mFRR, Energinet and Statnett do not distinguish between voluntary mFRR bids and bids with capacity payment.

When one control area only has mFRR corresponding N-1 left in the Nordic mFRR list (NOIS), reserve capacity can be "shared" between the control areas after an evaluation of whether the operational security allows it.

In addition to Nordic mFRR and especially in cases where there are few mFRR bids in certain Nordic areas, there can be possibilities to buy supportive energy from TSOs outside the Nordics for balancing purposes. In general, these resources (or prices for them) are not known in advance when e.g., the operator at Svenska kraftnät contacts the counterpart to ask if it is possible to activate mFRR bids for exchange.

In the same period as evaluation of expected imbalances for the next hour is made, the Balance Operators assess whether the planned production changes in the Nordic area and the HVDC exchange around hour shift are too large and hence will impact the frequency in a way that cannot be met entirely by activation of mFRR bids in the minutes before and after operational hour. If so, there is a need to advance or delay parts of planned production steps at the hour shift. The power schedules may be changed from 30 minutes before until 30 minutes after hour shift.

This is mainly important during morning and evening hours and also around day shift. If the changes are deemed to be high, the Balance Operators make a plan on how to level out these changes by an agreement with BRPs to reschedule the production. In situations with congestions, there is also a need to decide in which order the rescheduling should take place. E.g., in case of close to congestion on Hasle from Norway to Sweden it may be wise to start with increased production in Sweden/Finland 15 minutes before hour shift and decreased production in Norway in the first 15 minutes after the hour shift. In Norway and Sweden, it is sometimes possible to reschedule production steps within the hour if there are available production changes to reschedule.

In this first assessment a plan for volumes to be shifted both before and after the hour shift is made. The volumes to be shifted after the hour might be reassessed closer to the hour shift if something unplanned occurs that would interfere with the initial plan.
The production shift scheduling is made by calling the BRP and when relevant it is also made a check if the BRP has any activated mFRR bids that can affect the rescheduling.

4.4 During operational hour

During the operational hour the Balance Operators follow the trend of the operational situation and continuously estimate the upcoming need for readjusting the balancing. This is done in the same way as planning before the hour (as described above) but with a shorter time span in mind.

There are always risks of unpredictable events such as trip of production etc. When this occurs, the operators must make fast decisions on how to relieve the situation. The operators make a judgement based on the available real time data and planned information in order to make a decision on appropriate action. In such cases mFRR bids with faster response time than 15 minutes can be given priority over the price order if needed. These are then handled as special regulations. The mFRR bids that are skipped will thereafter be activated if needed and the special regulation will be changed to balancing energy activation regulation when mFRR bids no longer are skipped.

When congestion occurs between two bidding zones in the operational phase, the TSOs jointly determine when the areas no longer can be mutually regulated.

There is congestion between the bidding zones when it is not “possible" to carry out activation of mFRR bids based on the joint Nordic mFRR list without deviating from the normal price order of the Nordic mFRR list. The reason for this not being "possible", can be flows that are too high on the cross-border link itself or on other lines/transmission constraints or operational/trading rules which entail that it is not permitted to activate mFRR bids in the joint Nordic mFRR list. For activation of mFRR bids carried out for network reasons on the border between bidding zones, the cheapest mFRR bids in the subsystems which rectify the network problem are normally used.

Activation of mFRR bids for both frequency and congestions must be performed simultaneously and depending on which need that is the dominant there will be an iterative process in choosing the right actions to take.

Congestions and frequency are balanced out simultaneously at the latest within 15 minutes, but overloaded grid have priority over frequency in operations.

4.4.1 Need of activation of mFRR bids for low/high frequency-situations with no congestions

If there are no congestions to consider, the activation of mFRR bids is performed by activating mFRR bids in price order.

4.4.2 Need of activation of mFRR bids for high/low frequency-situations with exceeding NTC

In the operational phase, the operators will normally have NTC as the “target flow”. When the flow exceeds the "target flow" in real time, the operators will have to consider if this is due to activations of aFRR or FCR or not. If the frequency is 50.00 Hz so there is no aFRR and FCR activations, then mFRR needs to be activated to bring the flow back to the "target flow" to prepare for potential upcoming imbalances. If the frequency is different from 50.0 Hz, then the
operators will have to evaluate which share of the flow higher than the “target flow” that is due to activations of FCR and aFRR before deciding on potential activations of mFRR.

When NTC is exceeded, the following measures are relevant dependent on frequency:

- **Low frequency**
 - Up-regulations must be activated in the importing area
- **High frequency**
 - Down-regulations must be activated in the exporting area
- **Frequency 50 Hz**
 - First activation of mFRR bids in the importing area and thereafter in the exporting area

4.4.3 **Need of activation of mFRR bids for high/low frequency-situations and with “full” grid corridors**

When the need of activation of mFRR bids is primarily for frequency but the planned flow on grid corridors is “full”:

- **Low frequency**
 - Up-regulations are activated in the importing area until there is a sufficient margin in the flow and thereafter activation in the exporting area can be done if needed.
- **High frequency**
 - Down-regulations are activated in the exporting area until there is a margin in the flow and thereafter activation in the importing area can be done if needed.

The volume of activated mFRR bids on both sides of the congestion is dependent on the distribution of aFRR and FCR.

4.4.4 **Congestion management**

Congestion caused by a reduced transmission capacity to/from a bidding zone after day-ahead clearing due to disturbances or forced outages, are managed using counter trading and special regulations.

There is an issue on how long a “target flow”, an NTC or a TTC can be exceeded. This is first of all a question about expected development for the relevant flow, probability for severe additional incidents and how much the limits are exceeded.

The system is in general dimensioned for exceeding of the TTC in up to 15 minutes in case of a failure. In normal operation, the “target flow” should be NTC or lower, to be prepared to handle an N-1 fault. It could be relevant to introduce an indicator for system performance with minutes higher than TTC per year on some highly congested corridors in the same way as minutes outside the band for frequency. In case of congestions in the energy market, the flow should be equally distributed on each side of the “target flow” to reduce costly adverse (opposite direction to price difference) balancing power. However, a common operational view is that the TRMs on many corridors are too small in practice to fulfil this due to uneven FCR-distribution, ramping on HVDC, changing consumption and other dynamic variations through the hour.

5 **Topics for/under development**

This chapter lists identified projects and activities which are supposed to be implemented during 2021 – 2023 and which will have impact on the future Nordic balancing philosophy. This chapter is not necessarily complete and dealing with all topics which are under development.
5.1 Nordic mFRR EAM (Governed by Nordic Balancing Model program, NBM)

The new Nordic mFRR automated energy activation market (mFRR EAM) will replace the current manual Nordic regulating power market. The mFRR EAM introduces e.g., new bid attributes, automatic activation of mFRR bids, market clearing every 15 minutes and ACE-based balancing. The Nordic mFRR EAM prepares Nordic TSOs and BSPs for the transition to the common European mFRR energy activation market and platform, MARI.

More information on: https://nordicbalancingmodel.net/roadmap-and-projects/

5.2 Nordic aFRR CM (Governed by Nordic Balancing Model program, NBM)

A market where balancing service providers (BSPs) can offer bids for automatic frequency restoration reserves (aFRR) capacity to the transmission system owners (TSOs - i.e. Svenska kraftnät, Energinet, Fingrid and Statnett). aFRR can be activated by an automatic control device designed to get the frequency back to the normal frequency band (49.9 – 50.1 Hz) or get the area control error (ACE) to zero. aFRR replace the fast-responding frequency containment reserves (FCR).

The TSOs plan to start to reserve grid capacity for exchange of aFRR capacity after implementation of the Nordic aFRR capacity marked.

More information on: https://nordicbalancingmodel.net/roadmap-and-projects/

5.3 15 min ISP (Governed by Nordic Balancing Model program, NBM)

Today, the imbalance settlement period in the Nordics is 60 minutes. In Q2 2023, we will move to a 15-minute imbalance settlement period (ISP). At the same time, the market time unit (MTU) in the intraday and balancing markets will be 15 minutes as well.

More information on: https://nordicbalancingmodel.net/roadmap-and-projects/

5.4 New specifications for FCR (Governed by Regional Group Nordic, RGN)

New specifications for FCR reserve have been developed. A prequalification process ensures that FCR providers will have the ability to deliver the specified product required by the TSO.

5.5 FRR dimensioning (Governed by Regional Group Nordic, RGN)

New FRR dimensioning methodology in accordance with SOGL is being developed, as prepared for implementation of Mari and Picasso.

5.6 FCR-down (Governed by Regional Group Nordic, RGN)

New FCR-D downregulation will be implemented as a SOGL requirement, from begin of 2022.

5.7 Ramping restriction (Governed by Regional Group Nordic, RGN)

New framework conditions for ramping are being prepared for the transition from current centralized balancing per hour to the future decentralized balancing per 15 min ISP.
5.8 Flow-based capacity calculations (Governed by Market Steering Group, MSG)

New “Flow Based” capacity calculation method and IT-tools tool is being prepared as a substitute for the existing NTC calculation method.