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EXECUTIVE SUMMARY 

The purpose of the report is to provide the audience transparent view on hourly demand forecasting 
methodology and input data key assumptions used in European Resource Adequacy Assessment 
(ERAA) 2022.  

This report consists of 2 Parts: 1st is the hourly demand forecasting methodology description while 
Part 2 includes the key input data assumptions.  

In the Part 1 the demand-forecasting methodology is explained. 36 demand time-series based on 
historical load data, climate variables (1982-2016), calendar data and technology diffusion are 
adjusted to meet National Estimates TSO’s set targets for Average Annual Energy and Average 
Annual Maximum Peak of climate years 1982-2016 using methodologies described.  

Part 2 consists of Pan European Market Modelling Database (PEMMDB) main input data 
assumptions of high level of granularity: including input historical load period, EV profiles and uptake 
for National Estimates Scenario per market node.  

Key messages:  
 
Part 1: 
 

❖ The resulting TRAPUNTA load profiles were adjusted based on TSO’s input to meet National 
Estimates KPI’s – Target Average Annual Energy and Average Annual Peak - for Target Years 
2025, 2027 and 2030 – using methodologies described in Part 1. 

❖ ENTSO-E recently introduced a proposal for the European Resource Adequacy Assessment 
(ERAA) methodology. Pushed by the introduction of the ERAA methodology, ENTSO-E 
formalised its need for a unique tool that would undertake high-quality electricity demand 
forecasting and profiling for all ENTSO-E studies (i.e. short, medium and long-term).   

Part 2:  

❖ The EV profiles were categorized into 4 categories each for different UTC zones (UTC, +1, 
+2). Alternative EV profiles were submitted for specific TSO’s.  
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PART 1 – HOURLY DEMAND FORECASTING 
METHODOLOGY  

Introduction  

For the creation of hourly load profiles for most of the European countries, ENTSO-E uses a 
temperature regression and load projection model that incorporates with uncertainty analysis under 
various climate conditions. The model comes in a software application developed by an external 
provider. It is important to mention that the Member States for ERAA 2021 could have provided 
also their own hourly demand time-series directly to ENTSO-E, using other methodologies than the 
ENTSO-E one (for details please see the Appendixes 2, 3, 4) 

It allows to easily perform electric load prediction starting from data analysis of historical time series 
(electric load, temperature, climatic variables and other). Its overarching goal is to introduce an 
advanced forecasting tool which eventually will lead to a stronger harmonization of forecasting 
activities and comparability of their outcomes provided by ENTSO-E members. 

 

Figure 1: The embedding of demand forecasting in European resource adequacy assessment 

Figure 1 shows the position of demand forecasting within the European resource adequacy 
assessment (ERAA). As can be seen, it provides together with generation capacity forecasts and 
transmission capacity information fundamental input to market modelling. A more detailed 
description of input data, methodology and consistency checks are described in the following 
document.  
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TRAPUNTA approach: data-driven load prediction 

The TRAPUNTA tool has been conceived to address the problem of electric load prediction based 
on temperature and other climatic variables. More precisely, the tool is meant to provide an estimate 
of the daily load profile based on historical data of the load and of the climatic variables affecting 
the load. In addition, the tool has been prepared to perform load adjustment to consider the 
electrical market evolution such as the penetration of the heat pump technology, the increase of 
electric cars, batteries, the evolution of the base load, etc…  

This introduction focuses on the problem of load prediction based on historical climatic data, for 
which a dedicated innovative methodology has been devised and implemented in TRAPUNTA. 

A general overview 

The TRAPUNTA methodology is proposed to overcome the limitations of traditional approaches by 
allowing the possibility of reconstructing entire daily load profiles. The idea is to isolate significant 
load components via a mathematical analysis of the available integral load profiles. To achieve this 
goal, TRAPUNTA uses a mathematical technique named Proper Orthogonal Decomposition (POD) 
and based on the Singular Value Decomposition (SVD) factorization of the available daily load 
profiles for a given market node. The SVD factorization allows to extract a set of few orthogonal 
basis functions that can then be used for reconstructing different load profiles for the same node. 
The following paragraphs introduce the mathematical foundations of the approach, and provide an 
example of the capabilities of TRAPUNTA, including: 

❖ Prediction of the whole daily load profile 

❖ Analysis of the changes in the whole daily load profile during the year 

❖ Identification of dependencies associated to different groups of days 

❖ Identification and representation of bank holidays in specific market nodes 

❖ Identification of seasonal trends, such as daylight-saving time and summer vacation period. 

❖ Decomposition of the load components and reconstruction of a generic daily load profile 

As mentioned, the methodology is based on the extraction of a few independent (orthogonal) load 
components via an SVD decomposition of the available daily loads. These load components 
represent optimal basis functions for the reconstruction of a generic daily load profile. 

SVD factorization allows isolating load components that: 
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❖ can be used to optimally reconstruct a generic load profile. The SVD has the property of 
producing basis functions that are ordered by importance, so that the first few ones allow 
retaining most of the information available. 

❖ tend to be related to different physical components of the load, which implies different types 
of dependencies over the climatic variables or the types of days. 

The TRAPUNTA methodology employs these features to optimally reconstruct daily profiles while 
minimizing the degrees of freedom and limiting overfitting. In particular, an SVD is performed on the 
daily load profiles to extract the optimal basis functions for load reconstruction. The coefficients 
associated to the basis functions are parameterized based on the climatic variables and information 
on the types of days. For each coefficient (and basis function) only the most significant dependencies 
are retained. 

TRAPUNTA approach: electric load correction 

In addition to a load prediction based on climatic variables (and groups of days), TRAPUNTA gives 
the user the possibility to correct these predictions based on information and estimates about other 
load components. In particular, the possibility is provided to include predictions about: 

❖ electric vehicles, 

❖ sanitary water, 

❖ air conditioning fraction, 

❖ air conditioning load, 

❖ heating heat pumps fraction, 

❖ heating heat pumps load, 

❖ batteries impact, 

❖ additional base loads, 

❖ energy demand increase. 

 

Electric vehicles 

The load component due to the use of electric vehicles is added based on the following values 
provided by the correspondents: 
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❖ number of additional electric vehicles in the target year added to the system after 2016 and 
market node with respect to  

❖ consumption of the average electric vehicle for each category, expressed in kWh/100km 

❖ effective usage of the average EV user of each category, divided in weekdays and weekend, 
expressed in km/day 

❖ daily distribution of the effective usage – “EV load profile” 

The load adjustment is computed as: 

 𝐿0−24  =  10−5  ×  N ×  C ×  EU ×  norm(𝐷0 − 𝐷24) ( 1 ) 

where L is the load adjustment in MW, N is the number of additional vehicles, C is the consumption, 
EU is the effective usage, D is the given distribution, and norm() is an operation that rescales the 
distribution to unitary area - using constant interpolation, which means that the load is considered 
constant inside each 1-hour interval). 

Sanitary Water 

A load profile variation due to the change in sanitary water load is added based on the following 
parameters: 

❖ daily thermal load increment for both air-to-water and geothermal technologies, expressed 
in MWh/day, 

❖ daily distribution of the daily thermal load 

❖ air-to-water COP 

❖ geothermal COP, expressed as a single value, since it depends on the effective underground 
water or soil temperature rather than external air temperature 

 
𝐴𝐿𝑑𝑎𝑦, ℎ𝑜𝑢𝑟 =

𝐷𝑇𝐼 ∗ 𝑛𝑜𝑟𝑚(𝑃ℎ𝑜𝑢𝑟)

𝐶𝑂𝑃(𝑇𝑑𝑎𝑦, ℎ𝑜𝑢𝑟, 𝐻𝑑𝑎𝑦, ℎ𝑜𝑢𝑟)
∗  

𝐴𝐹

100
 

( 2 ) 

 

where AL is the load adjustment in MW, DTI is the Daily Thermal load Increment, P is the given 
profile, COP(T,H) is the COP, expressed as a function of both temperature and humidity, DTI is the 
additional daily thermal load necessary to heat up sanitary water. 

Air conditioning fraction  

A load profile variation due to the use of air conditioning is obtained by specifying the following 
parameters: 
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❖ the additional fraction of thermal load, 

❖ the COP curve as function of the relative humidity and temperature  

The comfort temperature is defined as the temperature for which there’s a minimum of the electrical 
load, as a function of the temperature, for each hour in the model.  

First, the comfort temperature is computed as follows: 
 

 𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡: 𝐿𝑚𝑜𝑑𝑒𝑙  (𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡, 𝑝𝑎𝑟𝑎𝑚. ) <  𝐿𝑚𝑜𝑑𝑒𝑙  (𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡 , 𝑝𝑎𝑟𝑎𝑚. ) 

∀𝑇 ≠  𝑇𝑐𝑜𝑚𝑓 

( 3 ) 

where Lmodel is the load computed by the regression model, param. are all the input used to compute 
the regression and T a generic population weighted temperature. The additional load is computed 
as: 

 
𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 =

𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟(𝑇𝑟𝑒𝑎𝑙)  −  𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟(𝑇𝑐𝑜𝑚𝑓)

𝐶𝑂𝑃(𝑇𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 , 𝐻𝑑𝑎𝑦,ℎ𝑜𝑢𝑟)
∗  

𝐴𝐹

100
 

( 4 ) 

 

Air conditioning load  

An additional load that does not depend on the regression. This additional load is obtained as linearly 
dependent on the temperature when the temperature is greater than the comfort one. 

A load profile variation is obtained specifying the following parameters: 

❖ thermal sensitivity 

❖ comfort temperature 

❖ the COP curve as function of the relative humidity and temperature (a scalar for geothermal 
air conditioning) 

The additional load by air conditioning it then computed as: 

 
𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 = max (

(𝑇𝑑𝑎𝑦,   ℎ𝑜𝑢𝑟  − 𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡) ∗ 𝑆𝑒𝑛𝑠

𝐶𝑂𝑃(𝑇𝑑𝑎𝑦,ℎ𝑜𝑢𝑟, 𝐻𝑑𝑎𝑦,ℎ𝑜𝑢𝑟)
, 0 ) 

( 5 ) 

 

Heat Pumps fraction 

A load profile variation due to the use of heating heat pumps is obtained specifying the following 
parameters: 
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❖ the additional fraction of thermal load, 

❖ the COP curve as function of the relative humidity and temperature (a scalar for geothermal 
air conditioning, since it depends on the effective underground water or soil temperature 

rather than external air temperature) 

The additional load is computed as: 

 
𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 =

𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟(𝑇𝑐𝑜𝑚𝑓)  −  𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟(𝑇𝑟𝑒𝑎𝑙)

𝐶𝑂𝑃(𝑇𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 , 𝐻𝑑𝑎𝑦,ℎ𝑜𝑢𝑟)
∗  

𝐴𝐹

100
 

( 6 ) 

where AF is the additional fraction specified by the user, T comf is the comfort temperature. As it is 
for sanitary water, there are two contributions related to heat pumps fraction: replacing and non-
replacing. The first one is used to specify the new load coming from heat pumps (COP>1) that 
substitutes the existing load coming from resistive electric heaters (COP=1). The second specifies 
the load from heat pumps as an additional load (e.g., from gas water heaters replacements). The 
cumulative growth is calculated from the annual percentage with respect to the reference year - 
target year interval. 

Heat Pumps load  

A load profile variation is obtained specifying the following parameters: 

❖ thermal sensitivity, 

❖ comfort temperature, 

❖ the COP curve as function of the relative humidity and temperature (a scalar for geothermal 
air conditioning) 

The additional load by heat pumps is then computed as: 

 
𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 = max (

 (𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡  − 𝑇𝑑𝑎𝑦,   ℎ𝑜𝑢𝑟 ) ∗ 𝑆𝑒𝑛𝑠

𝐶𝑂𝑃(𝑇𝑑𝑎𝑦,ℎ𝑜𝑢𝑟, 𝐻𝑑𝑎𝑦,ℎ𝑜𝑢𝑟)
, 0 ) 

( 7 ) 

Hybrid heat pumps fraction  

Similarly, to traditional heating pumps, the load profile variation due to the use of hybrid heating 
heat pumps is obtained specifying the following parameters: 
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❖ the additional fraction of thermal load 

❖ the COP curve as function of the relative humidity and temperature (a scalar for geothermal 
air conditioning, since it depends on the effective underground water or soil temperature 
rather than external air temperature) 

❖ A threshold temperature, below which, the pump switches to gas consumption and its 
electricity consumption goes to zero. 

As it is for sanitary water, there are two contributions related to heat pumps fraction: replacing and 
non-replacing. The first one is used to specify the new load coming from heat pumps (COP>1) that 
substitutes the existing load coming from resistive electric heaters (COP=1). The second specifies 
the load from heat pumps as an additional load (e.g., from gas water heaters replacements). The 
cumulative growth is calculated from the annual percentage with respect to the reference year - 
target year interval. 

Battery impact  

In general, batteries in Trapunta can be used to model any storage system simple enough to be 
described by the few parameters available (power, capacity, efficiency, usage). 

The impact of the batteries is estimated as a single concentrated battery. Its properties are: 

❖ maximum total power 

❖ total capacity 

❖ cycle efficiency 

The battery can operate in 4 different ways: 

❖ Fixed load and discharge, computed as 

 
𝑅𝑉 = min ( 

 𝑀𝑇𝑃 ∗ 𝐹𝐹

max(max(𝑛𝑜𝑟𝑚(𝑃𝑐ℎ𝑎𝑟𝑔𝑒)) , max (𝑛𝑜𝑟𝑚(𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) ∗ 𝐸)) ∗ 𝑇𝐶 ∗ 𝐹𝐹
 ) 

( 8 ) 

 𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 = (𝑛𝑜𝑟𝑚(𝑃𝑐ℎ𝑎𝑟𝑔𝑒)  −  𝑛𝑜𝑟𝑚(𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒)٠𝐸)٠𝑇𝐶٠𝐹𝐹٠𝑅𝑉 ( 9 ) 

where RV is a correction due to the maximum total power constraint, MTP is the maximum total 
power, TC is the total capacity, FF is the fraction of the battery dedicated to this type of operation 
E is the cycle efficiency and the P s are the charge and discharge profiles.  

❖ Photovoltaic load and discharge. computed exactly as a fixed load and discharge, but where 
the load shape is obtained by rescaling the irradiance to unitary area for each day. 

❖ Peak reduction, that computes the following problem on each day: 

𝐶, 𝐷:  𝑚𝑖𝑛𝑚𝑎𝑥(𝐿 − 𝐶 + 𝐷) , load (L) governing equation 

𝐶 > 0, 𝐷 > 0, positive charge (C) and discharge (D) constraint 
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𝐶 < 𝑀𝑇𝑃, 𝐷 < 𝑀𝑇𝑃  , maximum charge and discharge (MTP) constraints 

𝑚𝑎𝑥(𝑐𝑢𝑚𝑠𝑢𝑚(𝐶))  <  𝑇𝐶, maximum capacity (TC) constraint on charging 

𝑚𝑎𝑥(𝑐𝑢𝑚𝑠𝑢𝑚(𝐷))  <  𝑇𝐶, maximum capacity (TC) constraint on discharging 

𝐷 ∗ 𝐸 =  𝐶 , energy conservation constraint, considering the efficiency (E) 

❖ Ramp-up rate reduction, computed as the following minmax problem on each day: 

𝐶, 𝐷:  𝑚𝑖𝑛𝑚𝑎𝑥 (
𝑑

𝑑𝑡
(𝐿 − 𝐶 + 𝐷)) , load (L) governing equation 

𝐶 > 0, 𝐷 > 0, positive charge (C) and discharge (D) constraint 

𝐶 < 𝑀𝑇𝑃, 𝐷 < 𝑀𝑇𝑃  , maximum charge and discharge (MTP) constraints 

𝑚𝑎𝑥(𝑐𝑢𝑚𝑠𝑢𝑚(𝐶))  <  𝑇𝐶, maximum capacity (TC) constraint on charging 

𝑚𝑎𝑥(𝑐𝑢𝑚𝑠𝑢𝑚(𝐷))  <  𝑇𝐶, maximum capacity (TC) constraint on discharging 

𝐷 ∗ 𝐸 =  𝐶 , energy conservation constraint, considering the efficiency (E) 

Additional base load  

A load profile variation due to the presence of additional base loads is computed based on: 
 

❖ additional daily load 

❖ hourly profile 

The hourly profile is rescaled to unitary area, and is multiplied by the additional daily load value 
to get the actual load profile during the day, i.e.: 
 

 𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 = 𝑛𝑜𝑟𝑚(𝑃ℎ𝑜𝑢𝑟) ∗ 𝐴𝐷𝐿𝑑𝑎𝑦 ( 10 ) 

where P is the hourly profile and ADL is the value of the additional daily load. 
 

Energy demand 

A load profile variation due to an increase (or decrease) of electric demand is added based on the 
following inputs: 
 

❖ temperature dependent increase 

❖ temperature independent increase 

𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 = 𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟(𝑇𝑐𝑜𝑚𝑓) ∗
𝐷𝐹

100
 + (𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟(𝑇) − 𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟(𝑇𝑐𝑜𝑚𝑓)) ∗

𝐼𝐹

100
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The temperature dependent fraction of the total load is estimated using the comfort load where 
DF is the temperature dependent load increase (as percentage), and IF the independent one.  
 

Target demand functionality  

The load profile is adjusted to meet an annual target demand - the value of the average yearly 
energy demand (TWh) – as determined by the correspondents. The additional load can be re-
distributed in three different ways: 

❖ Proportional, computed as: 
 

𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 = (𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 ∗ (
𝑇𝐷

𝑠𝑢𝑚 (𝑠𝑢𝑚(𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟))
− 1) 

( 11 ) 

 

where TD is the annual target demand, L day,hour is the adjusted load (sum(sum()) indicates 
the yearly integral). 

❖ Baseload, computed as: 
 

𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 = ((
𝑇𝐷 − 𝑠𝑢𝑚(𝑠𝑢𝑚(𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟))

𝑁ℎ𝑜𝑢𝑟𝑠
− 1) 

( 12 ) 

where N hours is the number of hours in a year. 
❖ Temperature-independent, computed as: 

𝐴𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟 = (𝑇𝐷 − 𝑠𝑢𝑚(𝑠𝑢𝑚(𝐿𝑑𝑎𝑦,ℎ𝑜𝑢𝑟))) ∗ (
𝐼𝑁𝐷𝑑𝑎𝑦,ℎ𝑜𝑢𝑟

𝑠𝑢𝑚 (𝑠𝑢𝑚(𝐼𝑁𝐷𝑑𝑎𝑦,ℎ𝑜𝑢𝑟))
∗ 𝐹𝑅

+  
𝐷𝐸𝑃𝑑𝑎𝑦,ℎ𝑜𝑢𝑟

𝑠𝑢𝑚(𝑠𝑢𝑚(𝐷𝐸𝑃𝑑𝑎𝑦,ℎ𝑜𝑢𝑟))
∗ (1 − 𝐹𝑅)) 

( 13 ) 

 

where IND is the Temperature independent load, DEP is the temperature dependent load, and FR 
is the user-inputter fraction of additional load to be added to the temperature independent part 
of the load
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Linear Additive-Multiplicative Approach for Reciprocally 
Proportional Rescaling of Average Annual Peak 
The load profile is adjusted to meet an annual average peak demand as determined by the 
correspondents.  
 
 

(1) 𝐶1 = 𝑇𝑃 𝐴𝑃⁄ (𝑑1𝐶𝑌,ℎ) 

 
(2) 

 
𝑑2𝐶𝑌,ℎ = 𝑑1𝐶𝑌,ℎ ∗ 𝐶1;  𝐶𝑌 ∈ [1982,2016]; ℎ ∈ [1,8760] 

 
 
(3) 

 
𝐶2,𝐶𝑌 = 1 𝑌𝑃(𝑑2𝐶𝑌,ℎ)𝐶𝑌⁄  

 
 
(4) 

 
𝑑3𝐶𝑌,ℎ = 𝑑2𝐶𝑌,ℎ ∗  𝐶2,𝐶𝑌; 𝐶𝑌 ∈ [1982,2016]; ℎ ∈ [1,8760] 

 
 
(5) 

 

𝐶3,𝐶𝑌 =  ∑ 𝑑3𝐶𝑌,ℎ; 𝐶𝑌 ∈ [1982,2016]

ℎ=8760

ℎ=1

 

 
(6) 

𝐶4 = 𝐴𝑣𝑔( ∑ 𝑑1𝐶𝑌,ℎ); 𝐶𝑌 ∈ [1982,2016]

ℎ=8760

ℎ=1

 

(7) 
𝐶5 = 𝐴𝑣𝑔( ∑ 𝑑2𝐶𝑌,ℎ); 𝐶𝑌 ∈ [1982,2016]

ℎ=8760

ℎ=1

 

(8) 
𝐶6 =

𝐶4

𝐶5

 

(9) 𝐶7,𝐶𝑌 =  𝐶3,𝐶𝑌 ∗ 𝐶6; 𝐶𝑌 ∈ [1982,2016] 

(10) 𝐶8,𝐶𝑌 =  𝐶7,𝐶𝑌 − 𝐶3,𝐶𝑌; 𝐶𝑌 ∈ [1982,2016] 

 
(11) 

 
𝑑4𝐶𝑌,ℎ = 1 − 𝑑3𝐶𝑌,ℎ; 𝐶𝑌 ∈ [1982,2016]; ℎ ∈ [1,8760] 

 
(12) 

𝐶9,𝐶𝑌 =
1

∑ 𝑑4𝐶𝑌,ℎ
ℎ=8760
ℎ=1

 ;  𝐶𝑌 ∈ [1982,2016] 

(13)  
𝑑5𝐶𝑌,ℎ = 𝑑3𝐶𝑌,ℎ + 𝑑4𝐶𝑌,ℎ ∗ 𝐶9,𝐶𝑌 ∗ 𝐶8,𝐶𝑌; 𝐶𝑌 ∈ [1982,2016]; ℎ ∈ [1,8760] 

 
(14) 𝐶10,𝐶𝑌 = max(𝑑2𝐶𝑌,ℎ) ; 𝐶𝑌 ∈ [1982,2016]; ℎ ∈ [1,8760] 

 
(15) 

 
𝑑6𝐶𝑌,ℎ = 𝑑5𝐶𝑌,ℎ ∗ 𝐶10,𝐶𝑌; 𝐶𝑌 ∈ [1982,2016]; ℎ ∈ [1,8760] 

 
𝑇𝑃 − 𝑈𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑒𝑎𝑘(𝑀𝑊)  

𝐴𝑃(𝑑1𝐶𝑌,ℎ) − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑒𝑎𝑘 (𝑀𝑊) 𝑜𝑓 𝑎𝑙𝑙 𝐶𝑙𝑖𝑚𝑎𝑡𝑖𝑐 𝑌𝑒𝑎𝑟𝑠 (1982 − 2016)  

𝑑1𝐶𝑌,ℎ − 𝐷𝑒𝑚𝑎𝑛𝑑 ℎ𝑜𝑢𝑟𝑙𝑦 𝑉𝑎𝑙𝑢𝑒 "1" (𝑀𝑊) − "𝑇𝑟𝑎𝑝𝑢𝑛𝑡𝑎 𝑂𝑢𝑡𝑝𝑢𝑡"  

𝑑(𝑖)𝐶𝑌,ℎ − 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑟𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 𝑉𝑎𝑙𝑢𝑒 "𝑖" (𝑀𝑊); 𝑖 ∈ (2,5)  

𝐶(𝑖)𝐶𝑌,ℎ − 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑟𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝑀𝑊); 𝑖 ∈ (1,10)  
𝑌𝑃(𝑑(𝑖)𝐶𝑌,ℎ)𝐶𝑌 − 𝑌𝑒𝑎𝑟𝑙𝑦 𝑃𝑒𝑎𝑘 𝑜𝑓𝐷𝑒𝑚𝑎𝑛𝑑 𝑉𝑎𝑙𝑢𝑒 (𝑖) (𝑑(𝑖)𝐶𝑌,ℎ)  

𝑑6𝐶𝑌,ℎ − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑎𝑘 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ℎ𝑜𝑢𝑟𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 Value (MW) 
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Current challenges, limitations, and further ongoing developments  
In accordance with Article 23 of the Regulation (EU) 2019/943 of the European Parliament and 
Council of 5 June 2019 on the internal market for electricity (recast) ENTSO-E recently introduced 
a proposal for the European Resource Adequacy Assessment (ERAA) methodology. Pushed by the 
introduction of the ERAA methodology, ENTSO-E formalised its need for a unique tool that would 
undertake high-quality electricity demand forecasting and profiling for all ENTSO-E studies (i.e. 
short, medium and long-term). In relation to this need, the Task Force recognized a potential gap of 
the actual version of TRAPUNTA with respect to the expressed quality requirements of short-term 
and medium-term adequacy studies.  

 

Figure 2 - Key improvements 

The key project objective for the remainder of the Task Force Demand Forecasting Methodology 
activities involves the creation of a common methodology and the development of an upgraded 
version of the TRAPUNTA tool able to perform hourly load forecasting for all studies carried out 
within ENTSO-E (i.e. for short, medium, and long-term studies), ensuring the achievement of 
commonly-defined quality standards related to both energy and peak forecasts. The renewed scope 
of the Task Force Demand Forecasting Methodology is to define a unique methodology and develop 
a tool able to cover all ENTSO-E studies and time-horizons. The project will build upon the current 
version of the TRAPUNTA tool, develop a novel modelling framework and upgrade 
models/integrate functionalities to ensure the achievement of determined quality standards for all 
bidding zones.  

 

 



 DEMAND FORECASTING 

 

ENTSO-E | Rue de Spa, 8 | 1000 Brussels | info@entsoe.eu | www.entsoe.eu | @entso_e  Page 15 of 32 

 

PART 2 – INPUT DATA  

Key Assumptions: 

The EV profiles that were used were categorized into 4 categories each for different UTC zone (UTC, 
+1,+2).  

 

 

Figure 3. General EV profiles 
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Alternative EV profiles were submitted by following countries:  

Market Node 
/ Country 

Alternative EV profile  Market Node 
/ Country 

Alternative EV profile 

AL00 No PL00 Yes 
BA00 No TR00 Yes 
BG00 No Italy Yes 
CH00 No PT00 No 
CY00 No AT00 Yes 
CZ00 No BE00 Yes 
DKE1 No DE00 Yes 
DKW1 No FR00 Yes 
EE00 No Greece No 
ES00 Yes SK00 Yes 
FI00 No Sweden No 
HR00 No SI00 No 
HU00 No RS00 No 
IE00 Yes UA01 No 
LT00 No UK00 Yes 
LV00 No UKNI Yes 
MK00 No Norway No 
ME00 No NL00 Yes 
MT00 No   

 

Table 1 - Alternative EV profiles 
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Figure 4. Spain EV profile 

 

Figure 5. Ireland EV profile 
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Figure 6. Netherlands EV Type A profile 

 

Figure 7. Netherlands EV Type B profile 
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Figure 8. Netherlands EV Type C,D profile 

 

Figure 9. Austria EV Type A profile 
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Figure 10. Slovakia EV Type A profile 

 

Figure 11. Italy EV profile 
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Figure 12. United Kingdom EV profile 

 

Figure 13. Germany EV industry profile 
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Figure 14. Germany LKW profile 

 

Figure 15. Belgium EV Type A profile 
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Focus on the historical load input data 

Load on a power system is referred to as the hourly average active power absorbed by all 
installations connected to the transmission network or to the distribution network. The load is the 
value at a given moment of the electrical power supplied or absorbed at any point of a system as 
determined by an instantaneous measurement or by the integration of power during a given period 
of time. Load can refer to a consumer, an appliance, a group of consumers or appliances or a 
network. Load is the power consumed by the network including (+) the network losses but excluding 
(-) the consumption for pumped storage and excluding (-) the consumption of generating auxiliaries.  

Source: ENTSO-E Statistical Yearbook 2011  

Following table summarizes the input load data used for model creation for different Market Nodes 

 

 

 

Market Node Input historical Load (years)  Market Node Input historical Load (years) 
AL00 2016 - 2019 TR00 2016 – 2019 

BA00 2016 - 2019 Italy 2016 – 2019 

BG00 2016 - 2019 PT00 2016 – 2019 

CH00 2016 – 2019 AT00 2016 – 2019 

CY00 2016 - 2019 BE00 2016 - 2019  

CZ00 2016 – 2019 DE00 2016 – 2019 

DKE1 2016 – 2019 FR00 2016 – 2019 

DKW1 2016 – 2019 Greece 2016 – 2019 

EE00 2016 – 2019 SK00 2016 – 2019 

ES00 2016 – 2019 SE01 2016 – 2019 

FI00 2016 – 2019 SE02 2016 – 2019 

HR00 2016 – 2019 SE03 2016 – 2019 

HU00 2016 – 2019 SE04 2016 – 2019 

IE00 2016 – 2019 SI00 2016 – 2019 

LT00 2016 – 2019 SK00 2016 - 2019 

LV00 2016 – 2019 RS00 2016 – 2019 

MK00 2016 – 2019 UA01 2016 – 2019 

ME00 2016 – 2019 UK00 2016 – 2019 

MT00 2016 – 2019 UKNI 2016 – 2019 

NL00 2016 – 2019 NOM1 2016 – 2019 

PL00 2016 – 2019 NON1 2016 – 2019 

Table 2 - Historical load input data used for model training 
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COP and other input curves 

 

Figure 16 - Sanitary water hourly profile 

 

Figure 17 - Sanitary water COP curve 
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Figure 18 - Air conditioning COP curve air to air 

 

Figure 19 - Air conditioning COP curve air to water 
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Figure 20 - Heat Pumps air to air COP 

 

Figure 21 - Heat Pumps air to water COP 
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Figure 22 - Hybrid heat Pump air to air COP curve 

 

Figure 23 - Hybrid heat pump air to water COP 
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Figure 24 - Battery impact charging hourly profile 

 

Figure 25 - Battery impact discharge hourly p 
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APPENDIX 1: MODEL TRAINING AND FORECAST 
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APPENDIX 2: POLAND HOURLY DEMAND FORECASTING 
METHODOLOGY  

Polish methodology evolved from previous ENTSO-E tool SIMULA. Demand is impacted by the climate 
conditions (via e.g. air conditioning, electric heating). On the other hand some part of demand is climate 
independent, that is structural part of demand (e.g. load of industry processes). PSE methodology try to 
capture this distinction, still including the Climatic Years concept so the forecast is done in many different 
climatic conditions to make probabilistic analysis. To achieve all this goal we first of all detrend and de-
seasonalize data and then create an autoregressive model, which include temperature as representative of 
climate condition. PSE excludes other climate variables due to collinearity and secondarity. After making a 
forecast, we use dedicated temperature dependent technological models to make EV and HP forecast 
adjustment, which is consistent with ENTSO-E methodology.  

In the table below, a comparison of assumptions between Trapunta and PSE methodology is presented 

PSE and TRAPUNTA methodology 

Feature TRAPUNTA PSE Methodology PSE Comment 

Climatic 
parameters 

possible: 
Temperature, City 
Temperature, 
Wind speed, 
Irradiance, 
Humidity 

Average bidding 
zone temperature 

We analyse using many climatic 
parameters (as in TRAPUNTA, like wind 
speed, irradiation) but we find out 
correlation between them or having the 
same seasonality. Due to collinearity and 
lack of new information we decide to use 
only average temperature as 
representative of climate variables. 

Used method SVD + Regression 
Regression + 
Autoregresion 

 

Thermosensivity  Yearly Monthly 

Due to the significant differences of the 
thermosensitivity in winter and summer, 
we decided to use models for each month 
(12 models per year). It allows to better 
describe the complex nature of this 
phenomenon. 

Technology 
submodels (EV, 
HP) 

Dependent of 
model 

Independent 
Both, PSE and Trapunta profiles are 
climate-dependent 

Output 
Hourly demand in 
PECD Climatic 
Years 

Hourly demand in 
PECD Climatic 
Years 

 

Table 3. Comparison of assumptions between Trapunta and PSE methodology 
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APPENDIX 3: BELGIUM HOURLY DEMAND 
FORECASTING METHODOLOGY 

The Belgian approach is an evolved methodology inspired from the previous tool developed by ENTSO-E 
(SIMULA). This approach follows two main steps: 

The first step consists in generating load profiles accounting for thermosensitivity based on a given set of 
temperature.  

In a second step, three different types of components are taken into account to construct the hourly 
profiles: the growth factor (excluding electrification and additional base load), the additional baseload and 
finally additional electrification elements. The target yearly consumption is calculated via a stacking model 
divided by sector taking into account all drivers impacting the evolution of the total annual electricity 
demand (electrification, energy efficiency, macro-economic trends, etc) 

• In order to reach the target yearly consumption, a growth factor is applied to the raw profile 
obtained in the first step. This growth factor encompasses mainly energy efficiency, economic 
growth among others. After applying the growth factor, the electrification elements and the based 
load are added on top as they are independent of this step 1 profile. 

• The additional baseload is a constant value to be added on top of the profile generated in step 
one, it represents mainly the additional consumption of datacenters. 

• The electric vehicles (EVs) and batteries are modelled via their amount at the target time horizon 
multiplied by a daily profile. Regarding the heat pumps (HPs) and air conditioning (AC), the profiles 
are built in function of the number of appliances, a daily profile, and the daily temperature from 
each climate year. Adding these result accounts for the electrification of each of these elements 
as a last step of the applied approach. 

All elements added in the second step are following the same reasoning as applied in Trapunta and uses 
the PEMMDB data as source. The profiles of heat pump and air conditioning are based on ENTSO-E 
profiles. The only exception is the EV profile that comes from the e-mobility study realized by Elia in 
November 2020. This profile is a combination of two charging profiles described below (further 
information can be found in the Adequacy and Flexibility study 2022-32). Note that the share of V1G 
charging is increasing towards 2030. 

 
1) ‘Natural’ charging: the electric vehicle profile overlaps with the evening electricity consumption peak. 
No smart meter nor incentives are present to optimise the charging of the vehicle. The observed pattern 
is one in which people charge their EVs when needed, mostly after work. It results that it coincides with 
doing it at the same time as they use other electric appliances (for cooking, entertainment, etc.);  

2) ‘Optimised charging’ V1G: electric vehicles are combined with unidirectional smart charging technology 
(without the possibility of injections into the network) to optimise charging during off-peak periods;  
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APPENDIX 4: FRANCE HOURLY DEMAND 
FORECASTING METHODOLOGY 

Drawing up load curve forecasts 
Demand forecasts are prepared in two phases, as described below: 

> Forecasts established for annual energy demand, for each year in the study period, 
> Forecasts established for power demand, on an hourly basis, using as input data the annual energy demand 
forecasts calculated previously. 

Each phase includes a retrospective analysis of past years, and an alignment with the years used as reference 
for simulations, as well as a forward-looking study designed to offer a realistic idea of possible future outcomes 
based on today’s situation and current and future trends, including relevant shifts that may occur based on 
the determinants such as the electrification of space heating or the development of electric vehicles. Annual 
energy demand forecasts are calculated using an analytical approach and stacking model. This involves dividing 
electricity demand into sectors of activity. The following sector breakdown has been used (starting with the 
highest level of demand today): residential, tertiary, industry, energy (including network losses), transport and 
agriculture. 

Each sector is then broken down into branches or end-uses. Energy demand for each branch or end-use is 
estimated by multiplying and adding together “extensive” variables (generated quantities, heated floor surface, 
appliances per home, etc.) and “intensives” ones (unit consumption per produced unit, per sq. m, per home, 
etc.). The demand figures thus calculated are then aggregated for each sector. 

To provide input data for and exploit its forecasting models, RTE relies on data made available by research 
institutes (CEREN, BIPE, BatiEtude, GfK, etc.), public or semi-public institutions (INSEE, ADEME, etc.), trade 
associations and other sources. The results of statistical surveys and data drawn from RTE metering are used 
to align these variables with past data. Wherever possible, projections factor in information gathered from the 
economic actors in question. Sector information is updated regularly to take into account new end-uses, 
behavioural changes and the implementation of regulations designed to improve energy efficiency. Power 
demand forecasts are also calculated using a stacking method. 

Each non-temperature sensitive branch or end-use for which energy demand forecasts have been drawn up 
is associated with an hourly load curve profile. A large percentage of the profiles are generated using 
measurements under real conditions: RTE metering for branches of industry connected to the transmission 
grid, measurement campaigns for some residential and tertiary end-uses, etc. Profiles of the branches and 
end-uses for which no measurements are available are recreated based on knowledge about the profile of the 
sector of activity in question.  

The profiles of end-uses sensitive to weather conditions (heating and air conditioning) are calibrated using 
historical data. The calibration use the seasonality of the demand, building inertia, the influence of cloudiness, 
the fact that the heating is only triggered when a threshold temperature is reached. The method for calibrating 
heat-sensitive consumption profiles uses a coupling of an iterative dichotomy process with a linear regression 
solved by recursive least squares. The profiles are generated based on the PECD temperature datasets. 

These profiles are updated on a regular basis to incorporate new information about the sectors and emerging 
end-uses, new technologies. Such updates require data, which RTE takes from the measurement campaigns 
and surveys carried out by different players. 

Based on annual energy demand for each end-use or branch and the associated profiles, RTE calculates the 
anticipated load curve for the end-use or branch for the year under review. The demand forecasts thus 
calculated are then aggregated to produce the load curve for France. National load curves for past years, 
modelled by stacking end-uses or branches, are then aligned with the load curves measured for the most 
recent years. 
 


