ERAA 2021 – Assumptions and Scenarios

Public Webinar, 12 October 2021

Edwin Haesen, Head of System Development, ENTSO-E Kristof Sleurs, ERAA 2021 Steering Group Convener, ENTSO-E

Housekeeping Rules

Participants Questions

- Participants can place their questions directly through <u>sli.do</u> (<u>https://app.sli.do/event/7wchaqgx</u>)
- In **Sli.do**, feel free to vote for most relevant questions posted.
- Indicate **your name and company** when posting your question.
- The moderator will select a couple of questions and ask the relevant speakers to comment.
- Chat and raise the hand features of Gotowebinar will not be used.

How to login to Sli.do

Go to <u>www.sli.do</u> and enter **#188938** or scan the following QR with your phone to login

entso🕒

Our public webinars

What you will learn today, and after publication

PART I

- When? 12 October
- Agenda:
 - 1. Overview of the ERAA
 - 2. Timeline and Process
 - 3. What scenarios will ERAA 2021 use?
 - 4. Understanding our assumptions
 - 5. State of play
 - 6. Next steps and implementation roadmap

PART II

- When? November, post-publication
- Agenda:
 - 1. Overview of ERAA Results
 - 2. Understanding their implications
 - 3. Roadmap to ERAA 2022 and beyond

Background

ERAA is a legal mandate, which aims to understand how the rapid changes to our energy system will affect security of supply

A successor to the MAF, it is a pan-European monitoring assessment of power system resource adequacy, based on a state-of-the-art, globally unparalleled probabilistic analysis

The ERAA methodology, approved by ACER, has introduced significant changes. Stepwise implementation has begun in 2021.

ERAA 2021 already provides an effective tool to identify adequacy risks; future editions will provide further insights as to the potential need for interventions to guarantee security of supply.

By proactively identifying system adequacy challenges, ERAA will support decision-makers in ensuring secure, affordable and sustainable energy to citizens and industries.

Our Shared Objective is Net-Zero

Role of ERAA 2021

The comprehensive techno-economic assessment provided by ERAA helps understand how system changes interact, will inform decision makers and strengthens Europe's trajectory to net-zero.

Decarbonization NET ZERO **FLEXIBILITY** nce Policy ambitions Market des Reliability vs cost Deep electrification Heat waves Heat waves ner participation Building renovation Firm capacities 56 Consumer participation Interconnection levels **CO**2 Climate change Maintenance Deep electrification elisInterconnection levels. Smart homescold spells Weather dependent supply Policy ambitions Flexibility of all energy carriers Objective of net-zero by Resilience in other energy infrastructures 2050 structures all influence resource Planned and unplanned outages Market design SFlexibility of all energy carriers Heat waves activities. adequacy. Consumer participation Weather dependent supply a charge Extreme eventsPolicy ambitions Cold spells lience in other energy infrastructures Maintenance Central role of electricity Cold spells Market design Firm capacities means TSOs must manage Operational reservesExtr years in advance. an increasingly complex m capacities Climate change lanned and unplanned system. Extreme events

EFFICIENT PLANNING Public support for the Wide range of factors energy transition requires security of supply, lowest cost in the long run. New trends require forecasting adequacy Sharing of resources in integrated markets enables this.

ERAA: delivering crucial analysis in 2021

ERAA 2021: unparalleled worldwide in scope and comprehensiveness, based on a peerless data set, providing essential insights into system adequacy trajectories

Increasing need

- Member States, NRAs and policy makers facing increasingly complex decisions
- There is no substitute analysis for the pan-European power system which comes close to matching ERAA 2021.

Ambitious EU climate agenda

Key, long lasting energy and climate policies under debate:

- Fit for 55 Package
- Gas Decarbonisation
 Package

Essential insights

- The modelling is an enormous leap forward compared to previous Mid-Term Adequacy Forecasts (e.g. on Economic Viability Assessment).
- Highly complex flow-based Proof of Concept (POC) informs outcomes (to be developed to full maturity for ERAA 2022)

Dedicated assessments at different timeframes

Adequacy assessments

Short term

Mid term

Long term

Understanding adequacy is essential

Identify

 ERAA allows the identification of risks well in advance, as well as a view on how trends will evolve

Understand

 Cutting edge tools give deeper insights into the drivers of system inadequacy

Act

 ERAA enables early targeted action by stakeholders using the substantial toolbox available to mitigate risk

ERAA is not a precise prediction – it is an early warning which enables responsible system management decisions

entso₍₎ 9

CM = Capacity Mechanism, EVA = Economic Viability Assessment, EENS = Expected Energy not served; LOLE = loss of load expectation

ERAA 2021 webinar – assumptions and scenarios

Don't forget to post your questions on Sli.do:

Go to www.sli.do and enter **#188938**

or scan the following QR with your phone to login

Overview of the ERAA Scenarios

ERAA 2021 – Scenario overview

	CENTRAL	SCENARIOS	OTHER SCENARIOS		
SCENARIO NAME	WITHOUT CM	WITH CM	NATIONAL ESTIMATES	NATIONAL ESTIMATES WITH LOW THERMAL CAPACITY	FLOW-BASED
TARGET YEARS	2	2025	2025, 2030		2025
EVA STEP	Yes	Yes	simplified viability check	simplified viability check	Yes: without CM scenario
INTERCONNECTION MODELLING	EVA:NTC Adequacy: NTC	EVA:NTC Adequacy: NTC	NTC	NTC	Flow-Based in Core, NTC in other zones
APPLICABLE SENSITIVITIES	EVA: CO ₂ prices [€/ton]= <u>40</u> , 60 Price cap[k€/MWh]= <u>15</u> , 3 Adequacy: N/A		N/A	N/A	N/A
TOOL PUBLISHED IN THE REPORT	Ref tool in main report, other tools in annex	Ref tool in main report, other tools in annex	Ref tool in main report, other tools in annex	Ref tool in main report, other tools in annex	Complementary tool, in annex

Price cap assumptions (15000 \in /MWh in 2025 and 2030) are based on a review of wholesale price caps and VoLL estimates in several EU member states¹ CO₂ price assumptions (40 \in /ton in 2025 and 70 \in /ton in 2030) are average values proposed by Refinitiv during the Expert workshop on the Market Stability Reserve - organized end 2020 on request of the European Commission

CM = Capacity Mechanism, EVA = Economic Viability Assessment, NTC = Net Transfer Capacity

1 https://ec.europa.eu/energy/sites/ener/files/documents/swd 2016_385_f1_other_staff_working_paper_en_v3_p1_870001.pdf

Scenarios for 2025

NATIONAL ESTIMATES

TSO's provide forecasts for capacity based on planned lifetime, new generation estimates and National Climate and Energy Plans.

EVA WITHOUT CM

Economic Viability Analysis carried out, factoring in forecast carbon price and market price cap (VOLL)

EVA WITH CM

As above, with addition of capacity needed to meet system reliability standards in countries with an approved capacity mechanism.

NATIONAL ESTIMATES WITH LOW THERMAL CAPACITY

Acts as a kind of stress test: bottom-up estimation of thermal generation phase-out through policy measures and economic factors.

Our scenarios enable new insights

EVA

Brings together multiple aspects and interdependencies to give the most comprehensive economic analysis of Europe's generation assets ever

Considerations within the EVA:

- The possibility to invest in different generation and demand side technologies
- The impact of one investment on another / the interdependency of different investment options
- An estimation of the revenue streams in the energy-only market (EOM)

Central Scenarios

EVA with and without capacity mechanisms forms the central scenarios for 2025

ERAA 2021 webinar – assumptions and scenarios

Don't forget to post your questions on Sli.do:

Go to www.sli.do and enter **#188938**

or scan the following QR with your phone to login

Understanding the ERAA assumptions

Why ERAA uses assumptions

ENTSO-E ran a **data gathering exercise unprecedented in scope** (e.g. European wide viability assessment) to get information needed for the analyses.

ERAA relies on innovative new tools and advanced methodologies, subject to a number of limited simplifications and assumptions (as agreed as part of the Stepwise Approach).

ERAA is used to **identify risks and support decision-makers**. The use of informed assumptions supports better understanding of future scenarios and impacts of different decisions.

DATA/INFORMATION

TOOLS & METHODOLOGIES/ ANALYSIS

OBJECTIVES

entso₍₎ 18

Main assumptions

ERAA 2021 collects data from NECPs, accounts for climate change and evaluates adequacy for a selected set of scenarios

Interconnection

70% of cross border capacity considered by default by TSOs (exceptions explained in report's appendix on assumptions)

NECPs

National Energy and Climate Plans (status November 2020), collected through TSOs

Climate

Climate change accounted for (interim approach with temperature detrending) entso

Assumptions for fuel and CO₂ Prices

20

Fuel and CO₂ prices collected from TYNDP 2020, Booze&co, IEA, and EC/Refinitiv

		2025	2030	Reference		
€/net GJ	Nuclear	0.47	0.47	TYNDP 2020		
	Lignite G1	1.40	1.40	Booze&co "Understanding Lignite Generation Costs in Europe"		
	Lignite G2	1.80	1.80			
	Lignite G3	2.37	2.37			
	Lignite G4	3.10	3.10			
	Hard coal	2.30	2.48	IEA Stated Policies Scenario with USD/EUR average ratio 2020 - 0,877		
	Natural Gas	5.57	6.23	IEA Stated Policies Scenario with USD/EUR average ratio 2020 - 0,877		
	Crude oil	10.05	10.76	IEA Stated Policies Scenario forecast trend		
	Light oil	12.87	13.78	IEA Stated Policies Scenario forecast trend applying a 28% increase of pric wrt to crude oil		
	Heavy oil	10.56	11.30	IEA Stated Policies Scenario forecast trend applying a 5% increase of price wrt to crude oil		
€/ton	CO ₂ price	40	70	Average values proposed by Refinitiv during the Expert workshop on the Market Stability Reserve – organized in December 2020 by Vivid Economics on request of the European Commission		

ERAA 2021 assumptions: resource

-<u>\</u>

21

Icon from Flaticon.com

ERAA 2021 assumptions: demand

J.

entsoe 22

ERAA 2021 assumptions: climate years

35 historic climate years were detrended to consider recent climate change

Example for Belgium:

This is a temporary solution. ENTSO-E is working with climate projection experts to implement a holistic climate change database by 2023

Icon from Flaticon.com

To ask a question, scan the QR code

ERAA 2021 assumptions: grid

ERAA 2021 assumptions: grid

entso

25

ERAA 2021 webinar – assumptions and scenarios

Don't forget to post your questions on Sli.do:

Go to www.sli.do and enter **#188938**

or scan the following QR with your phone to login

State of play

Forward look at results

Operations

ERAA results underline the need for planning and regional coordination. It offers policy makers a technoeconomic assessment of risks when considering interventions to ensure system adequacy.

Capacity

The evolving economics of thermal generation, increasing integration of RES and flexible resources, and developments in carbon pricing, will put downward pressure on capacity.

Regions

Some regional variation across Europe. Western and Central Europe have lower margins, while Southern Europe has more robust adequacy with notable exceptions.

Forward look at results

EVA as central reference

The Economic Viability Assessment for 2025 in the central reference scenarios identified significant adequacy risks for the case without capacity mechanisms. This is most notable in Europe's islands.

National Estimates

This bottom-up scenario based on national projections (without EVA check) does not find any significant risks for 2025.

Stress test

Our National Estimates with Low Thermal Capacity Scenario finds significant adequacy risks. This underlines the need for robust planning and reasonable forecasts for the phase out of capacities.

Next steps

ERAA Implementation Roadmap

Alongside the delivery of ERAA 2021, ENTSO-E will deliver an updated roadmap with clear next steps

Stakeholder Interaction

- ERAA2021 views feeding into next ERAA
- Consultation on input data
- International benchmarking

Expanded methodology

- Scenarios heading towards Fit for 55
- Enhanced EVA with more target years
- Flow-based in central reference scenarios
- Role of demand response and electrolysers

Further proof of concepts

- EVA for other sources incl. storage
- Improved climate change modelling

Conclusions and Next Steps

Conclusions

- ERAA 2021 is the first leap within the stepwise implementation
- Regional interlinkages have deep impacts on decisions/assumptions

Next Steps

- Along with ERAA 2021, updated implementation roadmap to be published with detailed next steps
- Both will be open for consultation and stakeholder comments

Our values define who we are, what we stand for and how we behave. We all play a part in bringing them to life.

We are ENTSO-E