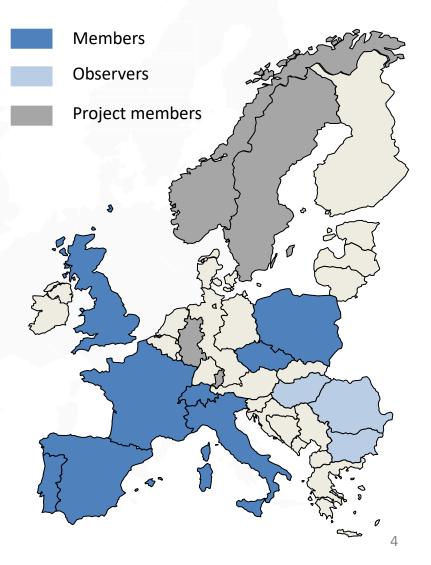


Agenda

TERRE Stakeholder Workshop

#	TOPICS	Timing (CET)
	Introduction	13:30
1	Introduction from TSOs on TERRE project	13:30
	Part 1	13:40
2	RR process description	13:40
3	RR Implementation Framework	13:55
4	Questions & Answers	14:15
B	Break	14:30
	Part 2	14:40
5	 Activation Optimization Function description 1. TERRE Market Principles 2. Market Products 3. Grid Modelling 4. Key principles of market design 5. IT platform - LIBRA Optimization Module (LOM) 	14:40
6	Activation Optimization Function updates	15:30
7	Questions & Answers	16:10
	End of the meeting	16:30

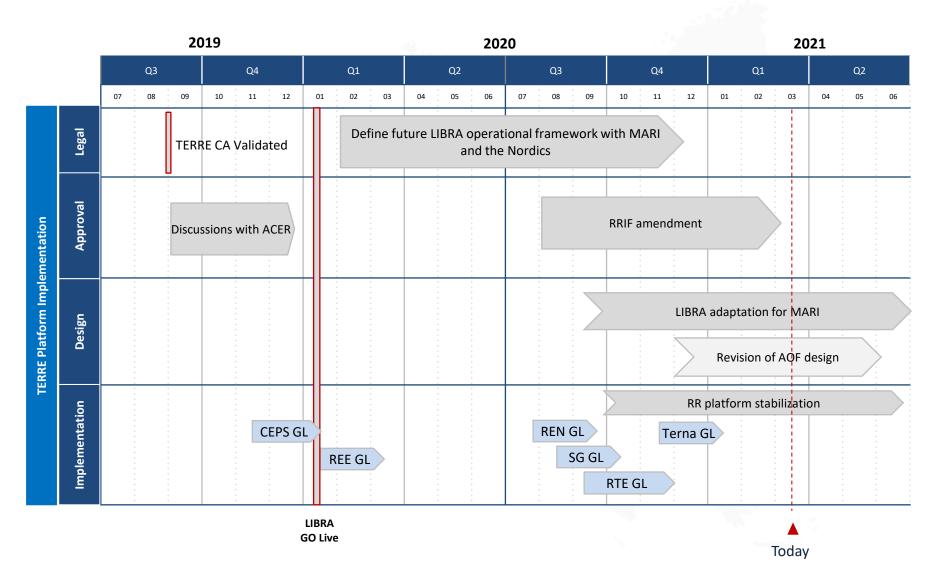
Topic 1: Introduction from TSOs

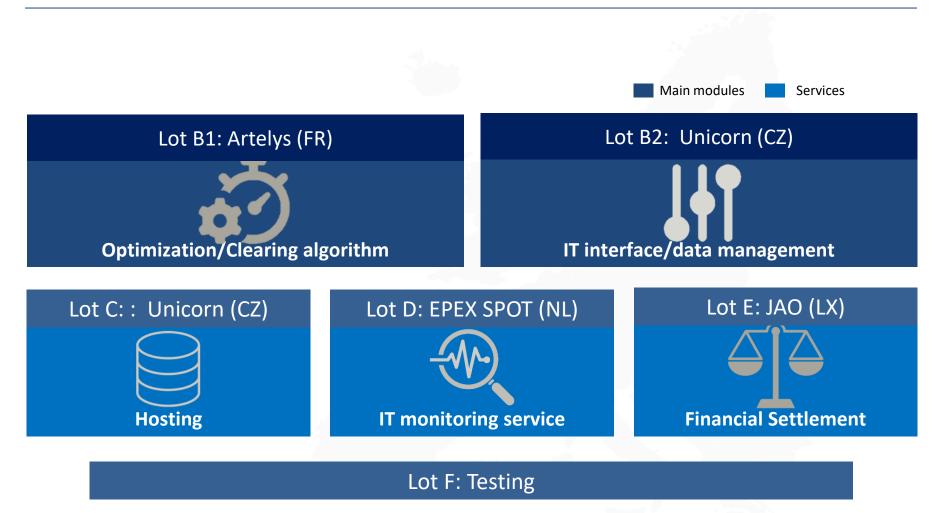

TERRE project - Participating TSOs

TERRE Members

- Region 1
 - France (RTE)
 - Great Britain (NG ESO)
 - Italy (TERNA)
 - Portugal (REN)
 - Spain (REE)
 - Switzerland (SG)
- Region 2
 - Czech Republic (CEPS)
 - Poland (PSE)
- Observers
 - Bulgaria (ESO)
 - Hungary (MAVIR)
 - Romania (Transelectrica)

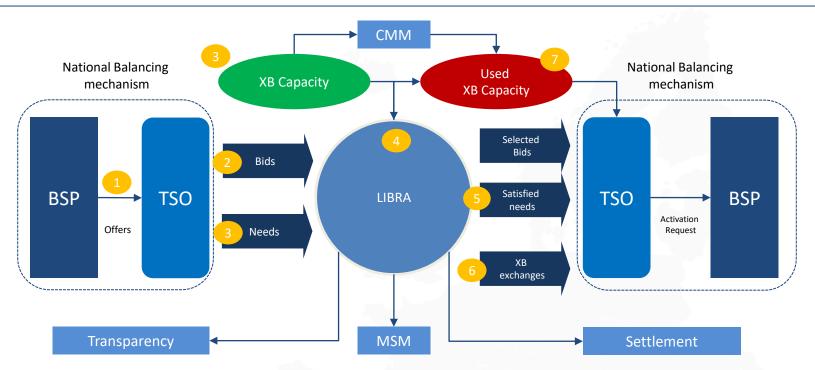
Project Members


- Germany (Amprion)
- Norway (Statnett) & Sweden (Svk)


Accession timeline – past and foreseen

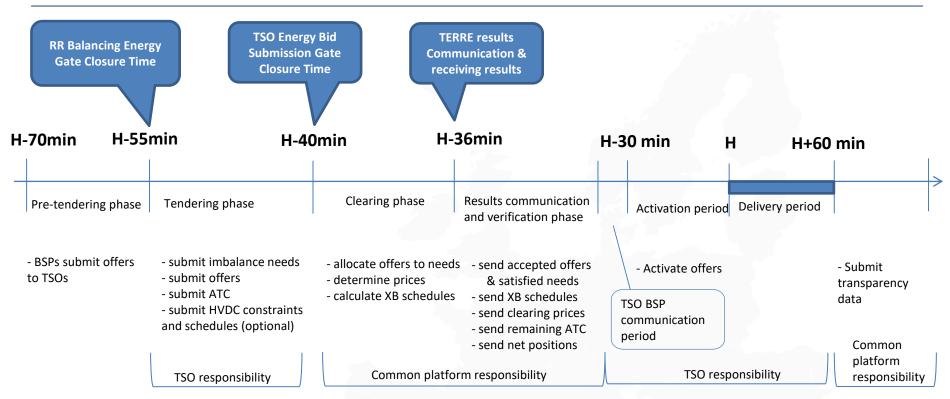
Country	TSO	Date of accession
Czech Republic	ČEPS a.s.	6 January 2020
Spain	REE - Red Eléctrica de España S.A.U	3 March 2020
Portugal	REN – Rede Eléctrica Nacional, S.A	29 September 2020
Switzerland	Swissgrid AG	8 October 2020
France	RTE - Réseau de Transport d'Electricité	2 December 2020
Italy	Terna - Rete Elettrica Nazionale SpA	13 January 2021
Poland	PSE - Polskie Sieci Elektroenergetyczne S.A.	Q1/Q2 2023
Great Britain	National Grid Electricity System Operator Ltd	On hold

High level planning


LIBRA platform overview

Topic 2: RR Process description

2. RR process description


RR process overview

- 1. TSO receive bids from BSPs from their local balancing area/bidding zone.
- 2. TSOs put the valid RR bids on the LIBRA platform
- 3. TSOs send their needs and ATC values to the platform.
- 4. Platform runs the algorithm with offers and needs.
- 5. Communication of accepted offers, satisfied needs and marginal prices
- 6. Calculation of the bilateral exchanges between balancing areas and TSO-TSO settlement.
- 7. Residual ATC and net positions are communicated to TSOs

2. RR process description

Timeline

RR process consists of the following phases:

- pre-tendering phase
- tendering phase
- clearing phase
- results communication and verification phase
- activation phase
- delivery phase

Topic 3: RR Implementation Framework

3. RR Implementation Framework

Highlights

The RRIF was validated by the NRAs on 14 January 2019 – link

After the approval of the TSO-TSO settlement proposal and the pricing proposal, the TSOs representatives of the TERRE project have carried out an amendment of the RRIF to reflect the following:

Changes submitted to Public Consultation in October 2020

- Designation entity Art. 10: Amendment to enable all TSOs to be regarded as operators of the platform
- Interconnection Controllability Art 3(b) & 11(3): The activation and settlement of bids for satisfying the controllability of interconnection will be compliant with the latest versions of the Pricing Proposal and the TSO-TSO Settlement Proposal validated by ACER, as of their entry into force in mid-2022.
- Daily clearings Article 11(5a): added mention that the reduction of cross-border scheduling steps to less than 60 minute it is still subject for possible derogation
- **Counter activations Art 13(5):** Postponement of the date set for the minimisation of the counter activations

Additional changes were included based on the feedback received during Public Consultation and by NRAs

Changes proposed by NRAs

- List of participating TSOs Article 1: TSOs no longer explicitly mentioned
- Rules for governance and operation of the RR Platform and designation of the entity Art.10 and Annex: clarifications and content moved to Annex

Changes following feedback received during Public Consultation

• High level design of the RR platform (DFR) - Art.3(b): wording made clearer

SOLUTIONS EN OPTIMISATION

TERRE Workshop

TERRE Public Workshop

Michaël GABAY, David JAMBOIS, Stefania PAN, Laurent BILLET

10/03/2021

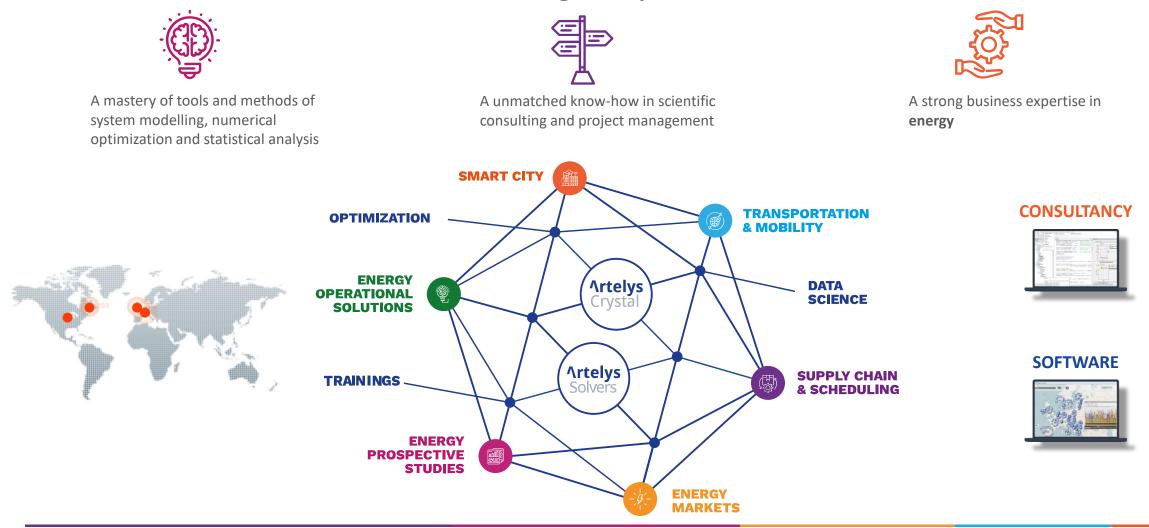
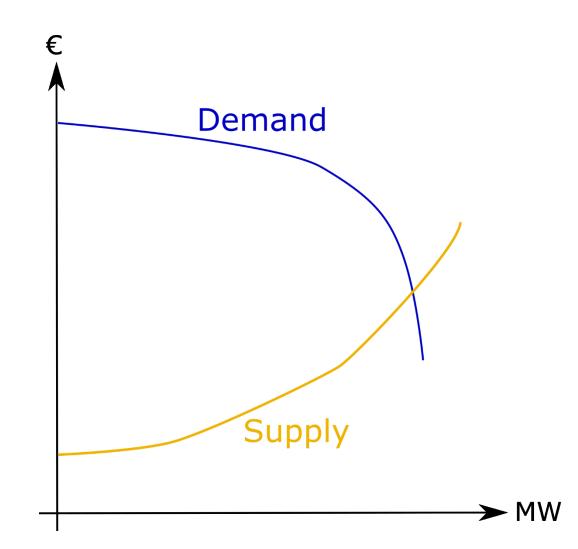
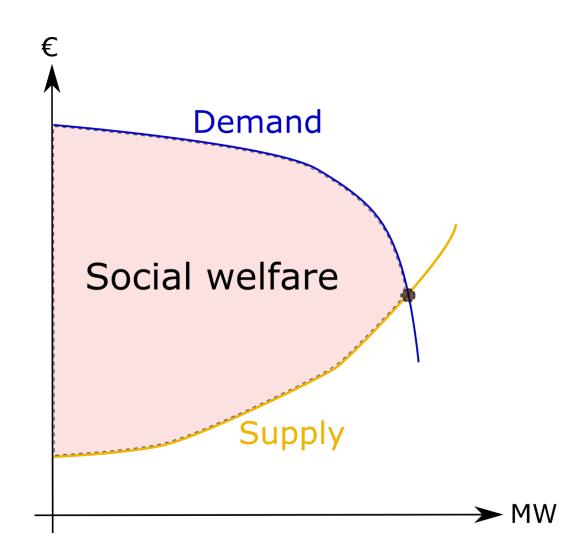
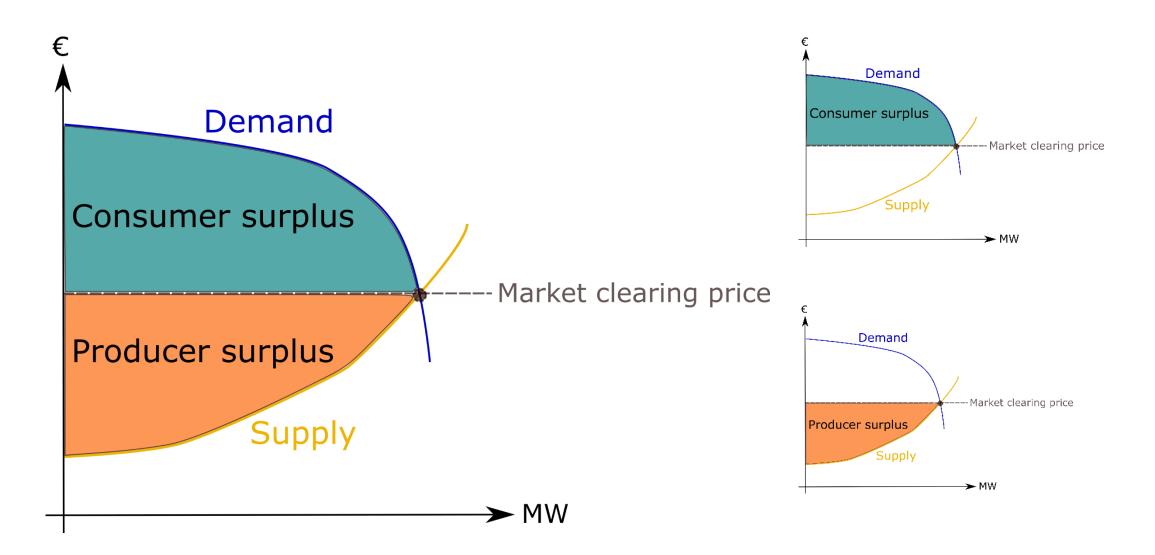

www.artelys.com

Table of content


- 1. TERRE Market Principles
- 2. Market Products
- 3. Grid Modelling
- 4. Keys Market Design Concepts
- 5. LOM (Libra Optimization Module)
- 6. Activation Optimization Function Updates
- 7. Examples and Questions

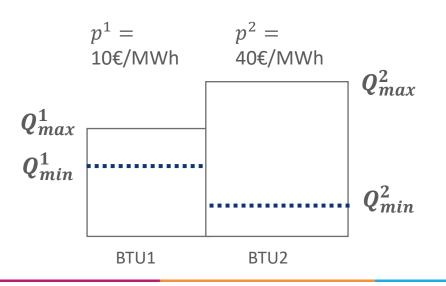

Artelys


Artelys is an **independent** company, founded in 2000, specialized in **decision** engineering, **modelling and optimization**

TERRE Market Principles

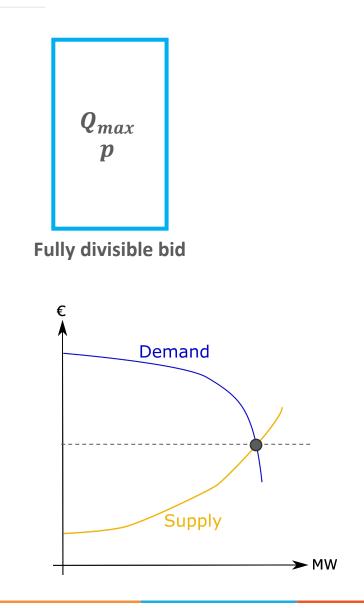
- **1** The Market Clearing Price (MCP) is defined by the intersection between the demand and supply curves
- **1** Social welfare as the sum of all surplus:
 - Consumer surplus
 - | Producer surplus
 - Congestion rent
- **1** Surplus values depend on Market Clearing Price
- **1** Social welfare does not depend on Market Clearing Price

Market Products



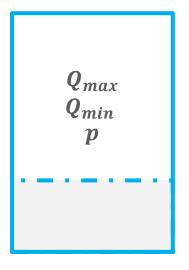
9

Balancing Bids


- **d** A balancing offers is characterized by
 - A scheduling area (schA)
 - One or several **time steps** (BTU). The clearing is performed on 4 BTUs.
 - A product:
 - → One common direction for all BTUs (Upward or Downward)
 - \mapsto Maximum quantity which can vary across BTUs $t (Q_{max}^t)$
 - \mapsto Minimum quantity which can vary across BTUs $t(Q_{min}^t)$
 - \vdash **Price** which can vary across BTUs $t(p^t)$
 - → The bid may belong to a family group (optional)

Fully Divisible Bids

- ▲ Fully Divisible Bid (FDB)
 - single-BTU
 - | Maximum quantity Q_{max} positive
 - \mid Price p
- **\checkmark** Accepted quantity lower or equal to Q_{max}
- **⊿** Bid is rejected if its accepted quantity is 0
- If all bids are FDB, acceptance only depends on if the bid is in the price or not

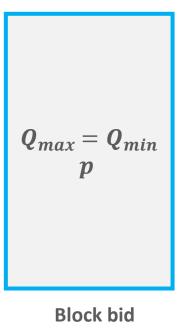


Divisible Bids

1 Divisible Bid

- single-BTU
- Maximum quantity Q_{max} positive
- | Minimum quantity Q_{min} strictly greater than 0
- | Price p

- **1** If the bid is accepted, the accepted quantity is between Q_{min} and Q_{max}
- **⊿** If the bid is rejected, the accepted quantity is 0

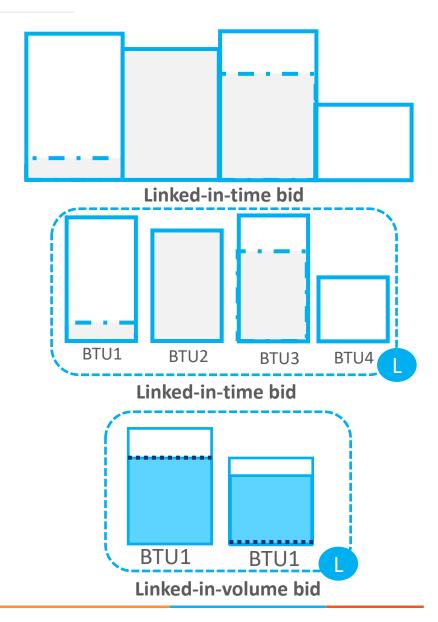

Block Bids

⊿ Block Bid

- single-BTU
- Maximum quantity Q_{max} equals to minimum quantity Q_{min}
- \mid Price p

1 The block bid can be either

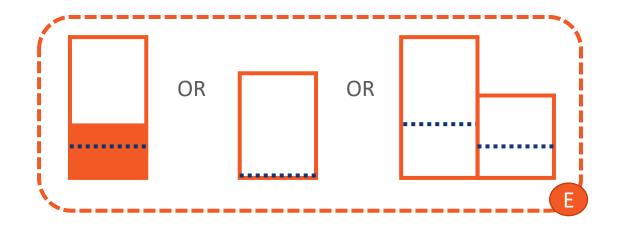
- | Rejected
- | Fully accepted


Linked Bids

⊿ Linked bid

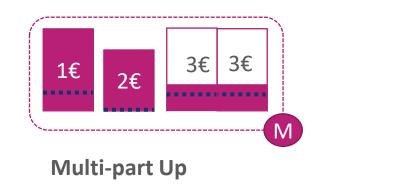
- Family of bids belonging to same schA
- Maximum/Minimum quantity can vary
- | Price can vary as well
- **1** All bid of the family have the same direction
- **1** Coupling constraint: **same ratio** for all bids of the family

2 types of linkage:


- **linked-in-time** (all bids on different BTU)
- linked-in-volume (all bids on same BTU)
- 2 ways in which BSPs (Balancing Service Providers) can submit link-in-time bids:
 - 1 bid defined on multiple BTUs
 - Several bids on different BTU with link indicator

Exclusive Bids

4 Exclusive bid


- Family of bids belonging to same schA
- Coupling constraint: **Only one bid of the family** can be accepted (even partially)
- Bids part of the family can be either **fully divisible**, **divisible** or **block**
- Bids part of the family can be **Upward** and/or **Downward**
- Bids part of the family can be single BTU and/or multi-BTU

Multi-part Bids

4 Multi-part bid

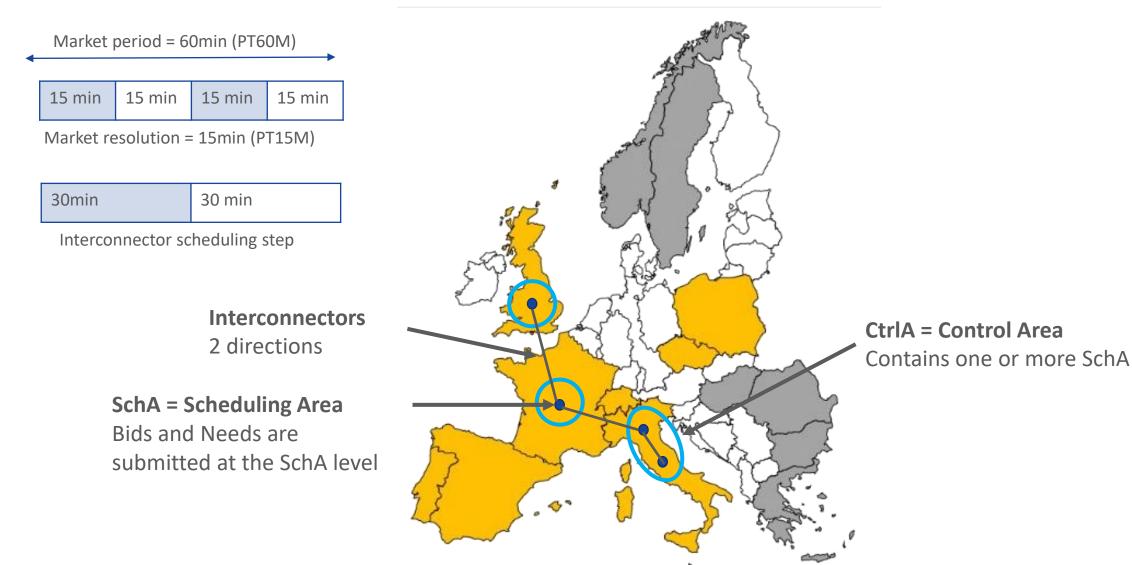
- Family of bids belonging to same schA
- Bids are ordered according to their price
- Coupling constraint: If on bid is accepted, All bids in earlier position shall be fully accepted
 - → Multi-part **Upward**: If a bid is accepted, all bids of the family with lower prices must be fully accepted
 - → Multi-part **Downward**: If a bid is accepted, all bids of the family with higher prices must be fully accepted
- Bids of the family can be multi-BTU, but must have constant price, maximum and minimum quantities across BTUs

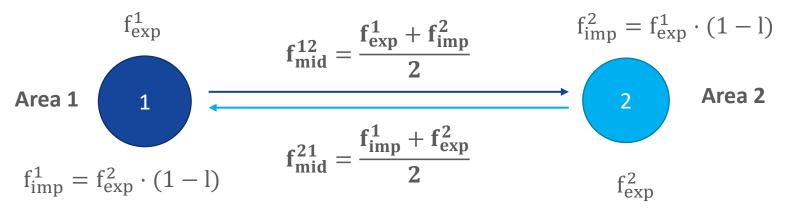
Balancing Needs Products

Elastic

1 3 types of Needs

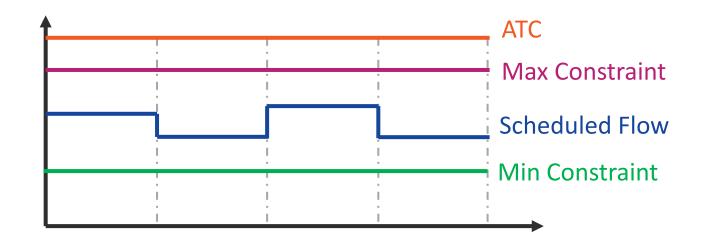
Inelastic


- **d** Common characteristics
 - Maximum quantity
 - **Zero minimum quantity** (fully divisible)
 - One direction: Upward or Downward
- **d** Specificities for each need type

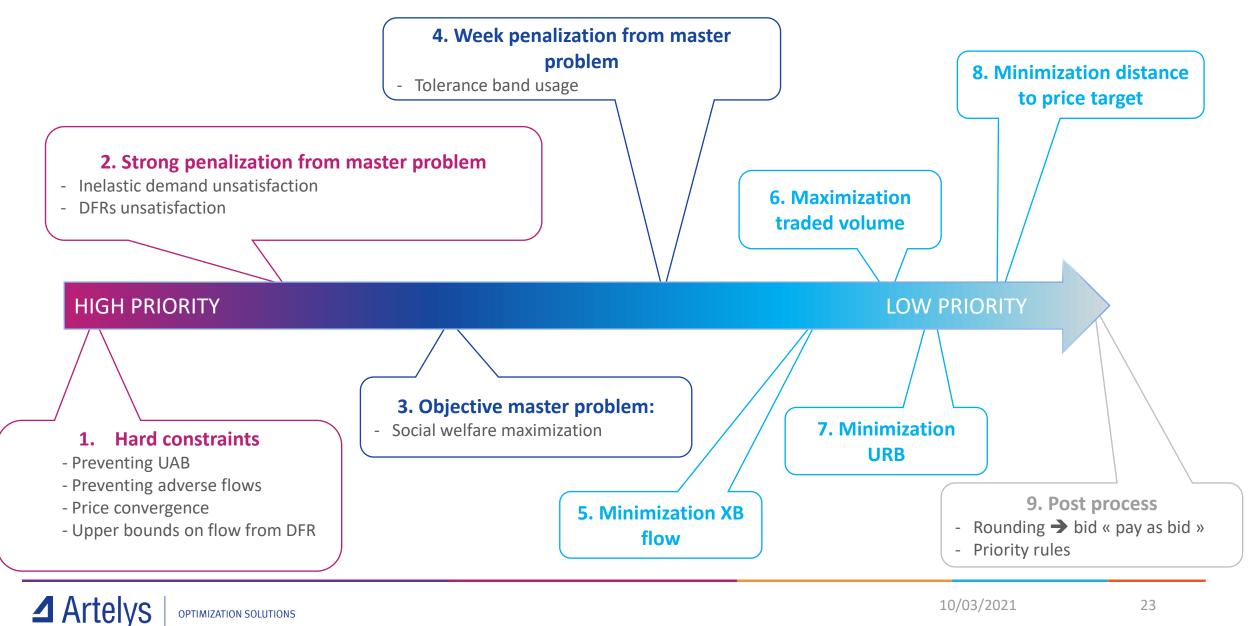

Grid Modelling

Geographic and temporal aspects

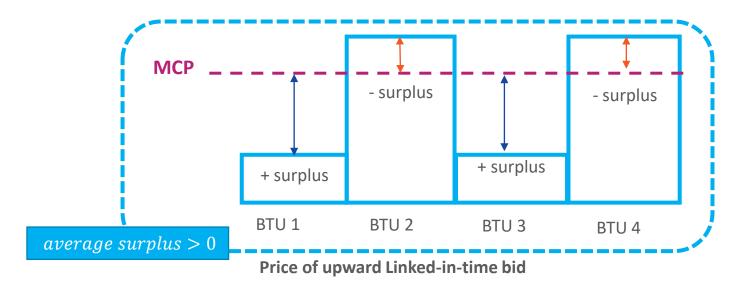
Interconnectors


- **1** An interconnector links two scheduling areas
- **1** Interconnectors characteristics
 - Losses (i.e. 0.1 = 10%)
 - Scheduling step (2 BTUs = 30 min)
 - Scheduling area ID for each side (i.e. Area 1 & 2)
 - | Two directions specifying for all BTUs:
 - → Available Transfer Capacity (ATC)
 - → Desired Flow Range

Desired Flow Range


Desired Flow Range (DFR) indicates a continuous interval for the flow on one or both interconnector directions

- I It relates to mid-channel flow
- | It takes into account
 - → already scheduled exchanges (Scheduled flow)
 - → A maximum overall flow (Max constraint)
 - → A minimum overall flow (Min constraint)


Keys Market Design Concepts

Market Rules Overview

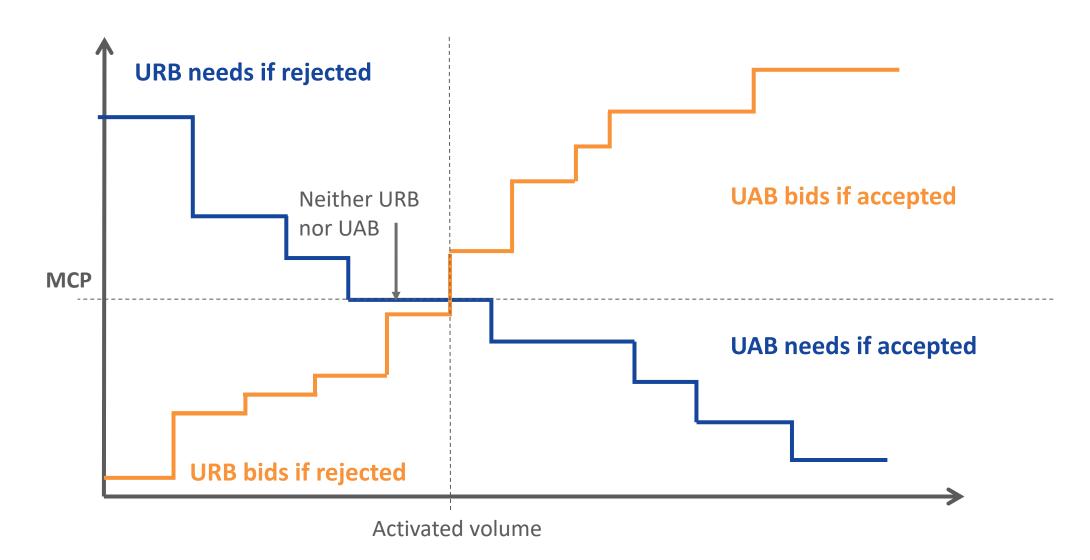
Average surplus

- Average surplus of a bid or an elastic need per unit volume (MWh) of energy that was submitted is the results of the comparison between:
 - 1 The average price of the bids
 - | The average market clearing prices
- **⊿** Average surplus can either be
 - Positive: bid is **in the money**
 - Negative: bid is **out of the money**
 - Equal to 0: bid is at the money

Average surplus is calculated in the same way for linked-in-time and linked-in-volume bids.

Unforeseeably Accepted Bids (UAB)

1 A bid or need is an **Unforeseeably Accepted Bid** (UAB) if:


- I The offer is accepted
- | The offer is out of the money (average surplus negative)
- **d** UABs are strictly forbidden so that
 - I Upward bids or downward needs cannot be paid less than their submitted prices
 - Downward bids or upward needs cannot be asked to pay more than their submitted prices
- **1** UABs rules are implemented as **hard** constraint in the model
 - For **single-BTU** offers (not part of complex family), UAB rule is straightforward:
 - → *MCP* shall be **greater or equal** than **bid** price
 - → *MCP* shall be **lower or equal** than **need** price
 - For **multi-BTU** offers, UAB constraints are expressed using the average surplus:
 - → average surplus shall be **greater or equal** to 0

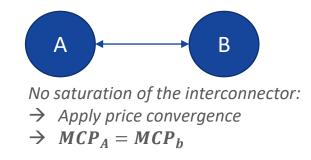
Unforeseeably Rejected Offers (URB)

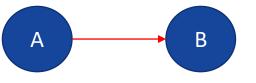
A bid or need is an **Unforeseeably Rejected Bid** (URB) if:

- I It is fully or partially rejected
- The offer is **in the money** (average surplus > 0)
 - \rightarrow A bid/need rejected and at the money (average surplys = 0) is not URB
- **d** URBs are not forbidden
 - Any bid or need can be URB
- **1** TERRE algorithm seeks to minimize URBs
 - Single-BTU URB minimization
 - Multi-BTU URB minimization
 - Price target determination

UAB/URBs Examples

27

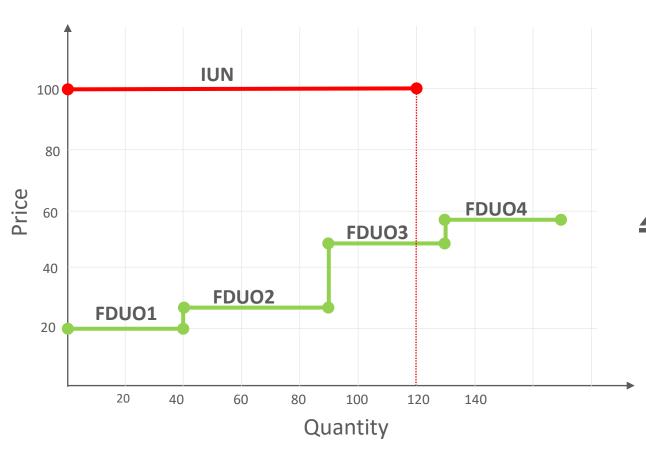

Considerations on Bids


1 Fully divisible bids are **key products in TERRE market**

- | They guarantee more **liquidity** on the market
 - → With FDB, accepting a bit more or a bit less of need is just a matter of a small variation of acceptance of the last bid
- Price indetermination is less likely to happen
- No combinatorial aspects (good for performances)
- **d** Complex and multi-BTU bids comes with coupling constraints
 - Problem becomes much more complex
 - Results are harder to interpret and can be counter intuitive

Price convergence and adverse flow

Interconnectors between areas also energy exchanges between these areas, but also coupled the market clearing prices of the areas.


Saturation of the interconnector from A to B: \rightarrow Prevent adverse flow \rightarrow MCP_A \leq MCP_b

1 Market coupling rules

Preventing adverse flow: if flow is in direction A → B on one scheduling step, the flow weighted average price in B shall be greater than the flow weighted average price in A (positive congestion rent)
 Ensure price convergence: In case of non-saturation of the interconnector between areas A and B, the market clearing prices in areas A and B should converge

1 Note: these rules integrate the eventual losses on the interconnectors

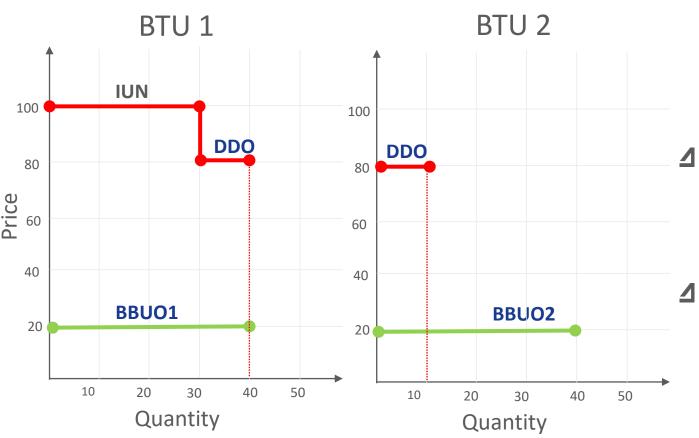
Example 1

- ▲ Bids/Needs (Upward)
 - | IUN : inelastic need 120 MW
 - | FDUO1 : FDB bid 40 MW @ 20 €/MWh
 - | FDUO2 : FDB bid 50 MW @ 25 €/MWh
 - | FDUO3 : FDB bid 40 MW @ 50 €/MWh
 - | FDUO4 : FDB bid 40 MW @ 55 €/MWh

4 Solution

- I IUN fully accepted
- | FDUO1, FDUO2 fully accepted
- FDUO3 partially accepted (30 MW)
- FDUO4 rejected
- Prix : 50 €/MWh
- Social welfare: 8450 € (= 120*100 40*20 50*25 30*50)

Example 2



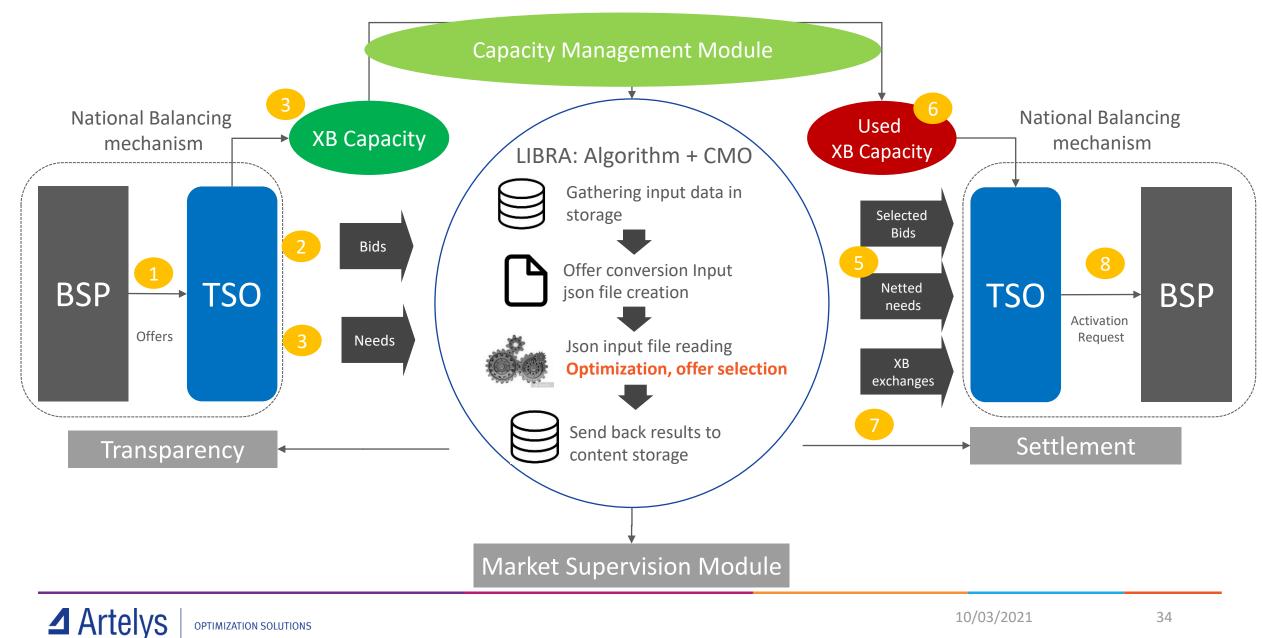
- **d** Bids/Needs (Upward)
 - I IUN : inelastic need 120 MW
 - BBUO1 block bid 160 MW @ 5 €/MWh
 - | FDUO1 : FDB bid 40 MW @ 20 €/MWh
 - | FDUO2 : FDB bid 50 MW @ 25 €/MWh
 - BBUO3 : **block** bid 40 MW @ 50 €/MWh
 - | FDUO4 : FDB bid 40 MW @ 55 €/MWh
- Possible solutions
 - Solution 1
 - └→ IUN fully accepted
 - → FDUO1, FDUO2 fully accepted
 - → FDUO4 partially accepted (30 MW)
 - → BBUO1, BBUO3 rejected
 - → Prix : 55 €/MWh
 - L→ Social welfare: 8300 € (= 120*100 40*20 50*25 30*55)

Solution 2

- └→ IUN fully accepted
- → FDUO1, BBUO3 fully accepted
- → FDUO2 partially accepted (40 MW)
- → BBUO1, FDUO4 rejected
- → Prix : 50 €/MWh
- L→ Social welfare: 8200 € (= 120*100 40*20 40*25 40*50)

Example 3

Bids/Needs


- I IUN : inelastic need Up 30 MW
- BBUO1 : **block** bid Up 40 MW @ 20 €/MWh sur BTU 1
- BBUO2 : **block** bid Up 40 MW @ 20 €/MWh sur BTU 2
- DDO : divisible bid **2-BTU** Dn [10,10] MW @ 80 €/MWh

Solution

- All offers are rejected
- Social welfare: 0 €
- If multi-BTU need DDO is replace by two equivalent single-BTU needs (DDO2, DDO2):
 - IUN fully accepted
 - DDO1, BBUO1 fully accepted
 - DDO2, BBUO2 rejected
 - Price [50, 80] €/MWh
 - Social welfare: 1500 € (=(30*100 + 10*80 40*20)*0.5)

Libra Optimization Module (LOM)

Data flow LOM

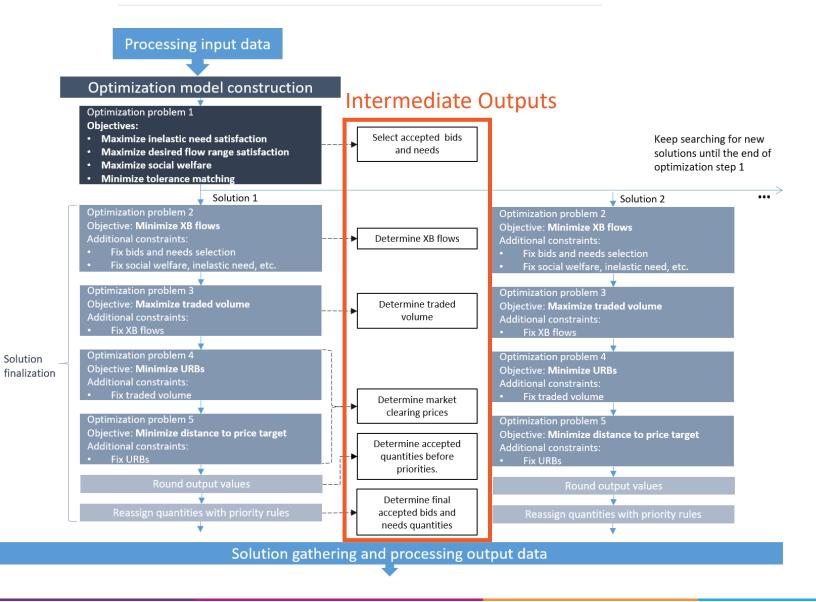
LIBRA resolution modes

⊿ Unconstrained Coupled (UC)

- | All bids and Needs
- All interconnectors
- Desired Flow Ranges NOT considered
- **⊿** C Mode

1 Artelys

- When Desired Flow Ranges are submitted
- Additionally compute **Constrained Coupled (CC)** optimization results:
 - └→ CC model is same as UC but DFR are taken into account
- CC and UC results are **merged** keeping:
 - └→ Quantity of CC mode
 - └→ Prices of UC mode
 - This merge process can create pay-as-bid


⊿ Decoupled mode (DC)

- All bids and Needs
- Cross border flow between control areas NOT considered
- **Desired Flow Ranges NOT considered**

Algorithm steps

Libra Platform sends the JSON files

Market clearing price determination

1 Price determination is done through multiple steps

- 1. Main problem
 - → UAB constraints enforce Lower/Upper Bounds on market clearing prices
 - → Price rules for interconnectors shall be consistent with price rule between areas
- 2. XB flow minimization
 - → No direct impact on prices
- 3. Traded volume maximization
 - → No direct impact on prices
- 4. URBs minimization
 - → Bounds on market clearing prices are updated
- 5. Distance to price target minimization
 - → Target prices defined as middle point between bounds from accepted offers prices and rejected marginals offer prices
 - → This steps defines the final market prices still respecting bounds defined in previous steps.

Activation Optimization Function updates

Analysis of the current situation

- Libra clearing design « philosophy »
 - Fully divisible bids (FDB) are key market product
 - → They guarantee **liquidity** of the market
 - → They make it much less unlikely to have price indetermination
 - → They have no combinatorial aspect (good for performances)
- **1** Analysis of the current situation
 - Current market situation
 - → FDB bids are not yet used in every market area
 - → Many multi-BTUs bids
 - → Many block bids
 - Satisfaction of inelastic need to be reinforced
 - The C mode market outcomes may not be straightforward
 - → (C mode = UC prices and the CC quantities)

Recent LOM Updates

1 Initially

- Only single-BTU bids where considered for URB minimization
- Only bounds from UAB/URB rules on single-BTU bids where used to define price targets
- Many URB multi-BTU bids experienced
- In particular, in some scheduling area only multi-BTU bids are submitted
- **1** The update implemented considers also multi-BTU bids in the definition of price targets
 - Dedicated optimization step to minimize URBs on multi-BTU bids
 - Both **bounds from UAB/URB rules on single-BTU AND multi-BTU bids** are considered in the definition of the price target and therefore with an impact on the market clearing price

Discussed LOM Updates

1 Reinforcement of inelastic need satisfaction

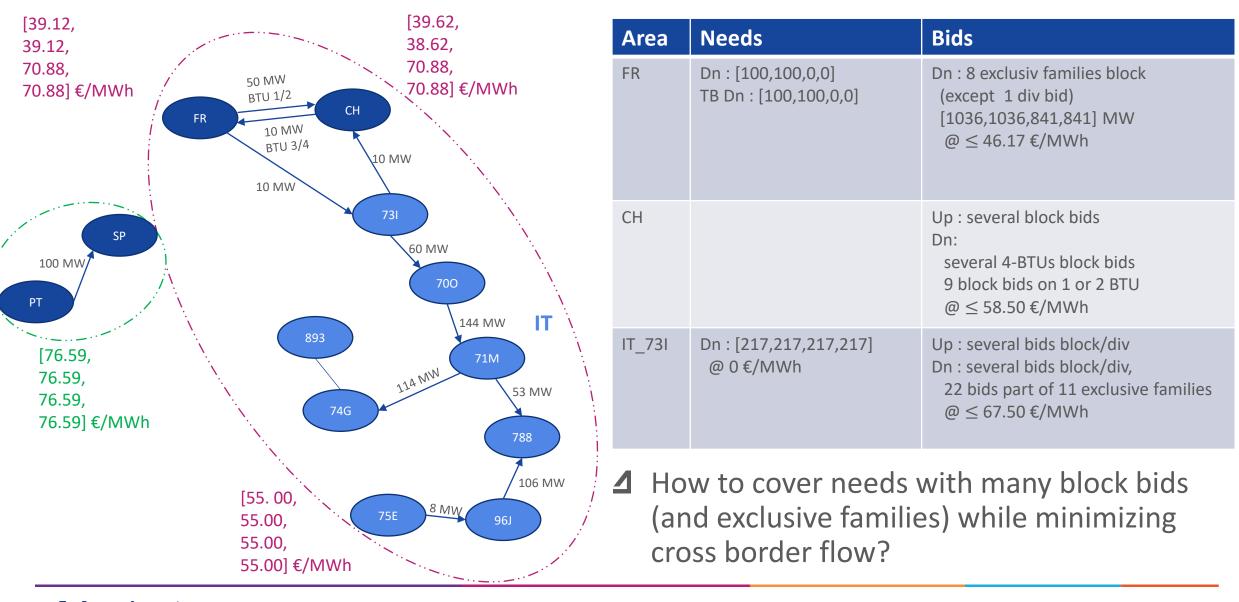
1. Inelastic need check

- → Ensure that all TSOs benefit from the coupled optimization (UC/CC solution)
- → If for at least one TSO, the inelastic need satisfaction is better in the decoupled optimization (DC solution), then the solution produced by decoupled optimization shall be used

1 Market clearing price determination

- 1. Ongoing discussions to further adapt the algorithm to the current market
 - → In some complex situations, even though the market clearing prices returned were compliant with the market rules, better prices could have been determined
 - └→ Ongoing discussions to improve the market clearing price determination process

Discussed LOM Updates : C mode

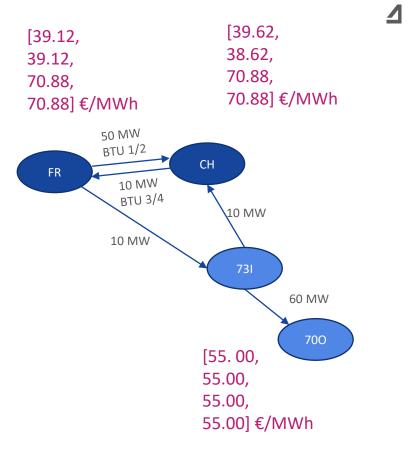

△ C mode / Single clearing

- 1. The C mode is the merge of the UC solution (prices) and the CC solution (quantities)
 - → Bids may be activated be **pay-as-bid**
 - → Potential high level of **uplift costs**
 - └→ Complex understanding of the market outcomes
- 2. Ongoing discussions in order to avoid such a level of uplift costs

Questions

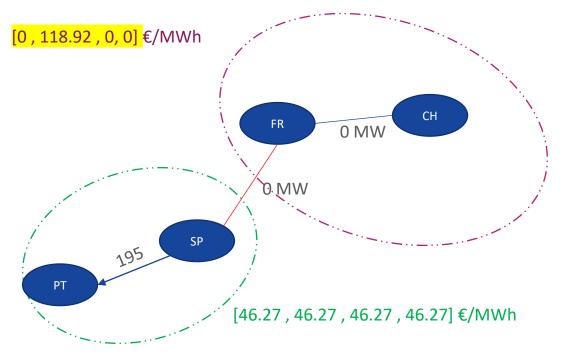
Examples

Example 1 – 18/01/2021 gate of 12h delivery period: 13h-14h (1)


Example 1 – 18/01/2021 gate of 12h delivery period: 13h-14h (1)

[39.12, 39.12,	[39.62, 38.62,	Area	Accepted needs	Accepted bids
70.88 <i>,</i> 70.88] €/MWh	70.88, 70.88] €/MWh	FR	Dn: [100,100,0,0] TB Up: [14,14,0,0]	Dn : [54,54,0,0] @ 39,12 €/MWh
60 MV BTU 1 FR 0 MW	CH 0 MW	СН		Dn: [60,60,0,0] in total [20,0,0,0] @ 58.50 €/MWh [0,20,0,0] @ 57.50 €/MWh [20,20,0,0] @ 57.00 €/MWh [20,20,0,0] @ 41.10 €/MWh
731 60 MW [55. 00, 55.00, 700		IT_73I	Dn : [217,217,217,217] @ 0 €/MWh	Dn: [151,151,151,151] @ 67.50 €/MWh (fully accepted) [6,6,6,6] @ 55.00 €/MWh (partially accepted)
	55.00, 55.00] €/MWh	So	ocial welfare maximizatio	n

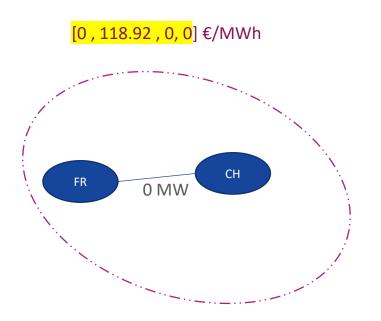
→ FR exports towards CH since CH only has Dn bids more expensive than bids in FR (BTU 1-2)


Example 1 – 18/01/2021 gate of 12h delivery period: 13h-14h (1)

Resolution process (finalization)

- XB flow minimization:
 - └→ Impact solution since flow from FR to CH shall be minimized
 - in CH on BTU 1-2. due to schdStep FR→IT_73I of 60min, FR is forced to export same quantities over all BTUs
 - Loop flow IT_73I → CH → FR → IT_73I on BTU 3-4
 - → $2 * 60^2 + 0 = 7200$ VS $2 * 50^2 + (4 + 4 + 2) * 10^2 = 6000$
- Traded volume maximization: No impact
- single-BTU URBs minimization: No impact
- multi-BTU URBs minimization :
 - → Partially accepted bids at 55.00 €/MWh fixes the price in IT_73I
- Distance to price target minimization
 - ⊢ Price target determination
 - Bounds UAB single-BTU : CH, BTU 1 = [-inf, 58.50] et BTU 2 = [-inf, 57.50]
 - Bounds URB single-BTU : No impact
 - Bounds UAB and URB multi-BTU (where still undefined bounds):
 - FR, BTU 1 and 2 = [-inf, 39.12]
 - IT_73I, all BTUs = [55, 55]
 - Target prices:
 - FR = [39.12, 39.12, ..., ...]
 - CH = [58.50, 57.50, ..., ...]
 - IT_73I = [55, 55, 55, 55]

Example 2 - 22/12/2020 gate of 12h delivery period: 13h-14h (1)

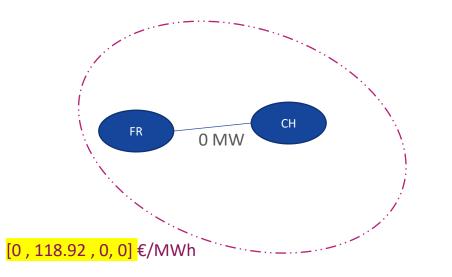


⊿ Context for FR – CH area

Area	Needs	Bids
FR	Dn : [500,500,500] @ 0 €/MWh	 Dn: 4-BTU Block bids ∈ 6 exclusive families price < 37€/MWh 1 div bid Dn [195,195,195,195] @ 38.4€/MWh Up: 4-BTU Block bids ∈ 10 exclusive families price > 42€/MWh
СН		Dn : Block bids @ < 44€/MWh Up: Block bids @ > 65€/MWh

⊿ Why do we get these prices in FR ?

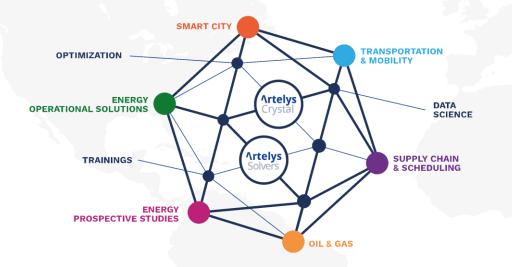
Example 2 - 22/12/2020 gate of 12h delivery period: 13h-14h (1)



⊿ Resolution process

Area	Accepted needs	Accepted bids
FR	Dn: <mark>[403, 500 , 403, 414]</mark> @ 0 €/MWh	Dn: Bid1 block : [127,127,73,73] @ 37.76 €/MWh Bid2 div : [179,179,179,179] @ 38.4€/MWh partially accepted Bid3 block : [97,194,194,162] @ 36.03 €/MWh

- Constant need cannot be covered by multi-BTU block bids with different volume across BTU
- **4** Social welfare maximization
 - Price convergence in FR-CH
 - Multi-BTU block bids constraints


Example 2 - 22/12/2020 gate of 12h delivery period: 13h-14h (1)

UAB bounds offer	URB bounds offers
Dn: Bid1: [127,127,73,73] @ 37.76 €/MWh Bid2 : [179,179,179,179] @ 38.4 €/MWh Bid3: [97,194,194,162] @ 36.03 €/MWh Dem :[403, 500 , 403, 414] @ 0€/MWh	Dn: Bid2 : [179,179,179,179] @ 38.4€/MWh Dem :[403, 500 , 403, 414] @ 0€/MWh

- **4** Resolution process(finalization)
 - | XB flow minimization: No impact
 - Traded volume maximization : No impact
 - single-BTU URBs minimization :
 - → Need partially accepted on BTU 1,3,4:
 - MCP BTU 1,3,4 = 0 €/MWh
 - multi-BTU URBs minimization
 - → Bid2 @ 38.4 €/MWh partially accepted:
 - Objective: sum MCP >= 38.4*4 to avoid URB
 - => MCP BTU2 >= 153.6 €/MWh (since MCP BTU 1,3,4 = 0€/MWh)
 - → UAB constraints for Bid1 :
 - MCP BTU 2 <= 118.92 €/MWh (since MCP BTU 1,3,4 = 0€/MWh)
 - Note: tighter constraint than Bid3 while less expansive
 - → MCP BTU 2 = 118.92€/MWh
 - Distance to price target minimization: No impact

Contact

Michaël GABAY, Project Director David JAMBOIS, Project Director Stefania PAN, Project Manager Laurent BILLET, Project Manager Name.Lastname@artelys.com

Artelys France 81 rue Saint-Lazare 75009 Paris, France Tel. +33 (0)1 44 77 89 00 www.artelys.com

51